Integrated Design of Flight Control System and Auxiliary Signal of Active Fault Detection Using a Multi-Model Approach

Document Type : Original Article

Authors

1 Electrical Engineering Department, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

2 Faculty of Electrical Engineering, Sahand University of Technology, Sahand, Tabriz, Iran.

3 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.

Abstract

A flight control system (FCS) as an example of nonlinear systems should be stabilizing the airplane in healthy and faulty modes with the desired performance. In this paper, first, the nonlinear model of the flight system (FS) is linearized in predefined operating points, and the airplane’s healthy and faulty modes convert to a multi-model system. To eliminate the undesired effect of multi-modeling and the controller robustness that usually causes to mask the faults in FSs, the problem of integrated design of FCS based on active fault detection (AFD) is formulated. The proposed problem concluded to design the optimal auxiliary signal of AFD and a static, fixed, and full-order controller with the capability in reduced-order design. The FCS guarantees to stabilize all of the healthy and faulty models and to satisfy the performance constraints. In the following, to solve the formulated problem, a numerical solution based on the genetic algorithm is proposed. To evaluate the proposed method, two full-order and reduced-ordered controllers are designed for an aircraft in the case of actuator degradation conditions. The simulation results show the ability of the proposed method to meet the control objectives and design the auxiliary signal for AFD.

Keywords


[1] Salahshoor, A. Khaki-Sedig, P. Sarhadi, "An indirect adaptive predictive control for the pitch channel autopilot of a flight system" , Aerosp. Sci. Technol, vol. 45, pp. 78–87, (2015).
[2] Liu, L. Zhang, P. Shi, H.R. Karimi, "Robust control of stochastic systems against bounded disturbances with application to flight control", IEEE T. Ind. Electron, vol. 61, pp. 1504-1515, 2014.
[3] Liu, H. Liu, F. L. Lewis, & Y. Wan, "Robust fault-tolerant formation control for tail-sitters in aggressive flight mode transitions", IEEE Transactions on Industrial Informatics, vol. 16(1), pp. 299–308, 2020.
[4] Ben Ahmed, M. Hryhoryeva, L.M. Hvattum, & M. Haouari, "A matheuristic for the robust integrated airline fleet assignment, aircraft routing, and crew pairing problem " , Computers & Operations Research, vol. 137(105551), 105551, 2020.
[5] Yang, & X. Zheng, "Adaptive NN back stepping control design for a 3-DOF helicopter: Theory and experiments", IEEE Transactions on Industrial Electronics (1982), vol. 67(5), pp. 3967–3979, 2020.
[6] Yu, Y. Fu, P. Li, & Y. Zhang, "Fault-tolerant aircraft control based on self-constructing fuzzy neural networks and multivariable SMC under actuator faults", IEEE Transactions on Fuzzy Systems: A Publication of the IEEE Neural Networks Council, vol. 26(4), pp. 2324–2335, 2018.
[7] Liu, M. Chen, & T. Li, "Resilient H∞ control for uncertain turbofan linear switched systems with hybrid switching mechanism and disturbance observer", Applied Mathematics and Computation, vol. 413(126597), 126597 , 2022.
[8] Ackermann, "Multi-model approaches to robust control system design", Lecture Notes in Control and Information Science, Springer Verlag, Berlin, 1985.
[9] Sato, K. Muraoka, K. Hozumi, "Flight control design and demonstration of unmanned airplane for radiation monitoring system", IFAC, South Africa, 2014.
 [10] بهنام صبحانی گندشمین ، سعید شمقدری «طراحی کنترل­کننده تحمل­پذیر عیب عملگر برای پرنده هوایی مافوق صوت با دینامیک غیرخطی»،مجله مهندسی برق دانشگاه تبریز، جلد 50 ، شماره 1، صفحات 283-294، بهار 1399.
[11] Wang, Y. Shen, & Y. Zhang, "Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties", Aerospace Science and Technology, vol. 99(105745), 105745, 2020.
[12] Hu, L. Liu, Y. Wang, Z. Cheng, & Q. Luo, "Active fault-tolerant attitude tracking control with adaptive gain for space crafts", Aerospace Science and Technology, vol. 98(105706), 105706, 2020.
[13] Zhang, Z. Han, X. Cai, "Simultaneous stabilization of a collection of single-input nonlinear systems based on CLFs", ASIAN J. Control, vol. 13, pp. 582-589, 2011.
[14] Ghosh, "Decentralized simultaneous stabilization of a class of two MIMO systems using a continuous-time periodic controller", Automatica, vol.  49, pp. 1515-1520, 2013.
[15] K. Das, J. Dey, "Simultaneous stabilization/pole placement of pairs of LTI plants using periodic controllers", IET Control Theory, vol. 9, pp. 493-499, 2011.
[16] L. Campbell, R. Nikoukhah, "Auxiliary signal design for failure detection" , Princeton University Press, Princeton, 2004.
[17] Dastaviz, T. Binazadeh, "Simultaneous stabilization of a collection of uncertain discrete-time systems with time-varying state-delay via discrete-time sliding mode control", J Vib Control. vol. 25(16), pp.2261-2273, 2019.
[18] Dastaviz, T. Binazadeh, Y.Cui, "A novel control Lyapunov-Krasovskii functional methodology for simultaneous stabilization of a set of multiple time-delays nonlinear systems", J Franklin Inst. vol. 358(12), pp. 6101-6120, 2021.
[19] Nikoukhah, S.L. Campbell, K. Drake, "An active approach for detection of incipient faults" , Int. J. Syst. Sci, vol. 41, pp. 241-257, 2010.
[20] R.E. Ashari, R. Nikoukhah, S.L. Campbell, "Active robust fault detection in closed- loop systems: quadratic optimization approach", IEEE T. Automat. Contr. 57 (2012) 2532-2544.
[21] Forouzanfar, & M. J. Khosrowjerdi. "Optimal auxiliary signal design for a lumped tire-road friction system" , Modares Journal of Electrical Engineering, vol. 13(4), pp. 61–68, 2014.
[22] Forouzanfar, & M. J. Khosrowjerdi, "A constrained optimization approach to integrated active fault detection and control",  Iranian Journal of Science and Technology Transactions of Electrical Engineering, vol. 41(3), pp. 229–240, 2017.
[23] Zong, X. Yang, X. Zhang, & W. Liu, "Active fault detection for spacecraft attitude control system", 2020 39th Chinese Control Conference (CCC), pp. 4083–4088 2020.
[24] A. Palmer, & G. M. Bollas, "Active fault diagnosis for uncertain systems using optimal test designs and detection through classification", ISA Transactions, vol. 93, pp.354–369, 2019.
[25] L. Berger, J. R. Hess, D. C. Anderson, "Compatbility of maneuver load control and relaxed static stability applied to military aircraft", AFFDL-TR-73-33, 1973.
[26] علی خدادادی، مریم شهریاری کاهکشی، عباس چترایی«ارائه رویکردی نوین برای طراحی کنترل­کننده تحمل­پذیر عیب عملگر بر اساس شناسایی عیب»، مجله مهندسی برق دانشگاه تبریز، جلد 48 ، شماره 2، صفحات 595-608، شهریور 1397.
[27] Chrif, Z.M. Kadda, "Aircraft control system using LQG and LQR controller with optimal estimation-Kalman filter design", Procedia Engineering, vol. 80, pp. 245-257, 2014.
[28] Fantinutto, G. Guglieri, F.B. Quagliotti, "Flight control system design and optimization with a genetic algorithm", Aerosp. Sci. Technol, vol. 9, pp.73-80, 2005.