[1] Shayesteh, V. Hakami, S.A. Mostafavi, A. Akbari Azirani, “A Novel Trust Computation Scheme for Internet of Things Applications”, Tabriz Journal of Electrical Engineering, vol 50, no. 2, pp. 743-755, 2020 (in persian).
[2] Chen, S. Mao, Y. Liu, “Big Data: A Survey”, Mobile Networks and Applications, vol. 19, pp. 171-209, 2014.
[3] Kolajo, O. Daramola, A. Adebiyi, “Big data stream analysis: a systematic literature review”, Journal of Big Data, vol.47, no. 6, 2019.
[4] Gurusamy, S. Kannan, K. Nandhini, "The Real Time Big Data Processing Framework: Advantages and Limitations", International Journal of Computer Sciences and Engineering, vol. 5, no. 12, pp. 305-312, 2017.
[5] Namiot, “On Big Data Stream Processing”, International Journal of Open Information Technologies, vol. 3, no. 8, pp. 48-51, 2015.
[6] Carnein, H. Trautmann, "EvoStream Evolutionary Stream Clustering Utilizing Idle Times", Big Data Research, vol. 14, pp. 101–111, 2018.
[7] K. Jain, M.N. Murty, P.J. Flynn, “Data clustering: a review”, ACM Computing Surveys, vol.31, no. 3, pp. 264-323, 1999.
[8] Ester, H.P. Kriegel, J. Sander, X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise”, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231, 1996.
[9] Behravan , S.H. Zahiri, S.M. Razavi, R. Trasarti, “Using Gray Wolf Optimization Algorithm in Big Data Clustering”, Tabriz Journal of Electrical Engineering, vol. 50, no. 1, 2020 (in persian).
[10] Leite DF, Costa P, Gomide F (2009) Evolving granular classification neural networks, IJCNN 2009, pp 1736–1743
[11] Smith, D. Alahakoon, “Growing self-organizing map for online continuous clustering”, Studies in computational intelligence, vol. 204, pp. 49–83, 2009.
[12] Dang, V. Lee, W. Ng, A. Ciptadi, K. Ong, “An EM-based algorithm for clustering data streams in sliding windows”, Lecture notes in computer science, vol. 5463, pp 230–235, 2009.
[13] Guha, N. Mishra, R. Motwani, L. O’Callaghan, “Clustering data streams”, Proceding 41st Annual Symposium Foundations Computer Science, 2000.
[14] Cao, M. Ester, W. Qian, and A. Zhou, “Density-based clustering over an evolving data stream with noise”, Proceeding of the Sixth SIAM Conference on Data Mining, 2006.
[15] Zhou, F. Cao, Y. Yan, C. Sha, X. He, “Distributed Data Stream Clustering: A Fast EM-Based Approach”, IEEE 23rd International Conference on Data Engineering, pp. 736-745, 2007.
[17] H. Dang, V.C. Lee, W.K. Ng, K. Ong, “Incremental and Adaptive Clustering Stream Data Over Sliding Window”, 20th International Conference on Database and Expert Systems Applications. pp. 660-674, 2009.
[18] P. Barddal, H.M. Gomes, F. Enembreck, “SNCStream: A Social Network-Based Data Stream Clustering Algorithm”, Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp.935–940, 2015.
[19] Khalilian, N. Mustapha, N. Sulaiman, “Data Stream Clustering by Divide and Conquer Approach Based on Vector Model”, Journal of Big Data, vol. 3, no. 1, 2016.
[20] Hyde, P. Angelov, A. MacKenzie, “Fully Online Clustering of Evolving Data Streams Into Arbitrarily Shaped Clusters”, Information Sciences, vol. 382, pp. 96–114, 2017.
[21] Gu, P. Angelov, D. Kangin, J. Principe, “Self-Organised Direction Aware Data Partitioning Algorithm”, Information Sciences, vol. 423, pp. 80–95, 2017.
[22] Su, Y. Li, X. Zhao, “Data Stream Clustering by fast Density-Peak-Search”, Statistics and its Interface, vol. 11, no. 1, pp. 183–189, 2018.
[23] Ahmed, G. Dalkılıç, Y. Erten, “DGStream: High quality and efficiency stream clustering algorithm”, Expert Systems with Applications, vol. 141, 2020,
[24] Fahy, S. Yang and M. Gongora, "Ant Colony Stream Clustering: A Fast Density Clustering Algorithm for Dynamic Data Streams", IEEE Transactions on Cybernetics, vol. 49, no. 6, pp. 2215-2228, 2019.
[25] Longnguyen, Y. Kwongwoon,W. Keongng, "A Survey On Data Stream Clustering And Classification", Knowledge And Information Systems, vol. 45, pp. 535–569, 2014.
[26] Mansalis, E. Ntoutsi, N. Pelekis, Y. Theodoridis, "An Evaluation of Data Stream Clustering Algorithms", Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 11, no. 4, 2018.
[27] Carnein, H. Trautmann, "Optimizing Data Stream Representation: An Extensive Survey on Stream Clustering Algorithms", Business & Information Systems Engineering, vol. 61, no. 3, pp. 277–297, 2019.
[28] Mohiuddin, "Data Summarization: A Survey", Knowledge and Information Systems, vol. 58, pp 249-273, 2019.
[29] Whitley, Darrell. "A genetic algorithm tutorial", Statistics and Computing, vol.4, no.2, pp. 65–85, 1994.
[30] M. Spears, K.A. De Jong, T. Bäck, D.B. Fogel, H. de Garis, “An overview of evolutionary computation”, Lecture Notes in Computer Science, vol. 667, pp. 442-459, 1993.
[31] Maulik, S. Bandyopadhyay, “Genetic algorithm-based clustering technique”, Pattern Recognition, vol. 33, no. 9, pp. 1455–1465, 2000.
[32] C. Aggarwal, J. Han, J. Wang, P.S. Yu, “A framework for projected clustering of high dimensional data streams”, Proceedings of the thirtieth international conference on very large data bases, vol. 30, pp. 852–863, 2004.
[33] López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, M. Birattari, “The irace package: iterated racing for automatic algorithm configuration”, Operation Research Perspectives, vol. 3, pp. 43–58, 2016.