[1] B. Fazeli Asl, S. S. Moosapour, "Adaptive backstepping fast terminal sliding mode controller design for ducted fan engine of thrust-vectored aircraft," Aerospace Science and Technology, vol. 71, pp. 521-529, 2017.
[2] Fan, X. Changle, X. Bin, "Modelling, attitude controller design and flight experiments of a novel micro-ducted-fan aircraft", Advances in Mechanical Engineering, vol. 10, no. 3, pp. 1-16, 2018.
[3] Wang, C. Xiang, Y. Ma, and B. Xu, "Comprehensive nonlinear modeling and simulation analysis of a tandem ducted fan aircraft," in Guidance, Navigation and Control Conference (CGNCC), 2014 IEEE Chinese, pp. 255-261: IEEE, 2014.
[4] Chadli, S. Aouaouda, H.-R. Karimi, and P. Shi, "Robust fault tolerant tracking controller design for a VTOL aircraft," Journal of the Franklin Institute, vol. 350, no. 9, pp. 2627-2645, 2013.
[5] Cimen, "State-dependent Riccati equation (SDRE) control: A survey," IFAC Proceedings Volumes, vol. 41, no. 2, pp. 3761-3775, 2008.
[6] Pearson, "Approximation methods in optimal control I. Sub-optimal control," International Journal of Electronics, vol. 13, no. 5, pp. 453-469, 1962.
[7] Korayem, S. Nekoo, "Finite-time state-dependent Riccati equation for time-varying nonaffine systems: Rigid and flexible joint manipulator control," ISA transactions, vol. 54, pp. 125-144, 2015.
[8] Heydari and S. N. Balakrishnan, "Approximate closed-form solutions to finite-horizon optimal control of nonlinear systems," in American Control Conference (ACC), 2012, 2012, pp. 2657-2662: IEEE.
[9] Heydari, S. Balakrishnan, "Path planning using a novel finite horizon suboptimal controller", Journal of guidance, control, and dynamics, vol. 36, no. 4, pp. 1210-1214, 2013.
[10] G. Lin, M. Xin, "Impact Angle Guidance Using State-Dependent (Differential) Riccati Equation: Unified Applicability Analysis", Journal of Guidance, Control, and Dynamics, vol. 43, no. 11, pp. 2175-2182, 2020.
[11] Ashish, A.J. Sinclair, "Nonlinear control for spacecraft pursuit-evasion game using the state-dependent Riccati equation method", IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 6, pp. 3032-3042, 2017.
[12] Pan, K. D. Kumar, G. Liu, and K. Furuta, "Design of variable structure control system with nonlinear time-varying sliding sector," IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1981-1986, 2009.
[13] Xu, D. Zhou, and S. Sun, "Finite time sliding sector guidance law with acceleration saturation constraint," IET Control Theory & Applications, vol. 10, no. 7, pp. 789-799, 2016.
[14] Cucuzzella, G.P. Incremona, A. Ferrara, "Event-triggered variable structure control", International Journal of Control, vol. 93, no. 2, pp. 252-260, 2020.
[15] Hongmei, "Simulation Research on Ship Electric Propulsion Speed Regulation System Based on Variable Structure Control and FPGA", Microprocessors and Microsystems, In press, 2020.
[16] Tourajizadeh and S. Zare, "Robust and optimal control of shimmy vibration in aircraft nose landing gear," Aerospace Science and Technology, vol. 50, pp. 1-14, 2016.
[17] Pukdeboon and P. Kumam, "Robust optimal sliding mode control for spacecraft position and attitude maneuvers," Aerospace Science and Technology, vol. 43, pp. 329-342, 2015.
[18] -H. Zheng, J.-J. Xiong, and J.-L. Luo, "Second order sliding mode control for a quadrotor UAV," ISA transactions, vol. 53, no. 4, pp. 1350-1356, 2014.
[19] H. Korayem, S. R. Nekoo & M. H. Korayem, "Sliding mode control design based on the state-dependent Riccati equation: theoretical and experimental implementation", International Journal of Control, vol. 92, no. 9, pp. 2136-2149, 2017.
[20] H. Korayem, S.R. Nekoo, M. H. Korayem, "Optimal sliding mode control design based on the state-dependent Riccati equation for cooperative manipulators to increase dynamic load carrying capacity." Robotica, vol. 37, no. 2, pp. 321-337, 2019.
[21] Farkh, M. Ksouri, and F. Bouani. "Optimal Robust Control for Unstable Delay System," Comput. Syst. Sci. Eng., vol. 36, no. 2, pp. 307-321, 2021.
[22] Pujol-Vazquez, S. Mobayen, and L. Acho. "Robust control design to the furuta system under time delay measurement feedback and exogenous-based perturbation," Mathematics, vol. 8, no. 12, pp. 21-31, 2020.
[23] Gkizas, "Optimal robust control of a Cascaded DC–DC boost converter," Control Engineering Practice, vol. 107, 2021.
[24] Xu, Q. Wang, and Y. Li. "Adaptive Optimal Robust Control for Uncertain Nonlinear Systems Using Neural Network Approximation in Policy Iteration," Applied Sciences, vol. 11, no. 5, 2312, 2021.
[25] Kiamini, A. Jalilvand, and S. Mobayen, "LMI-based robust control of floating tension-leg platforms with uncertainties and time-delays in offshore wind turbines via TS fuzzy approach," Ocean Engineering vol. 154, pp. 367-374, 2018.
[26] Batmani, M. Davoodi, and N. Meskin, "Nonlinear suboptimal tracking controller design using state-dependent Riccati equation technique," IEEE Transactions on Control Systems Technology, vol. 25, no. 5, pp. 1833-1839, 2016.
[27] Batmani, and S. Khodakaramzadeh., "Nonlinear estimation and observer-based output feedback control," IET Control Theory & Applications, vol. 14, no. 17, pp. 2548-2555, 2020.
[28] Batmani, " Event-triggered Observer Design for Nonlinear Networked Control Systems," Tabriz Journal of Electrical Engineering, vol. 49, no. 1, pp. 71-77, 2019.
[29] Nazari, "State Dependent Riccati Equation based Model Reference Adaptive Control for Finite Duration Cancer Treatment by using a Mixed Therapy," Tabriz Journal Of Electrical Engineering, vol. 48, no. 1, pp. 369-380, 2018.