Joint Resource Allocation and Position Optimization in NOMA-based Multi-UAV Wireless Communication Networks

Document Type : Original Article

Authors

Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

Abstract

In this paper, we study an uplink multi-unmanned aerial vehicle (UAV) wireless communication network where multi-UAV are deployed to serve the ground users by utilizing the non-orthogonal multiple access (NOMA) technology. The goal is to minimize the total transmit power of users by jointly optimizing the user association, sub-channel assignment, power allocation and UAVs’ position. The formulated problem is a mixed integer non-convex optimization that is difficult to solve in optimal approach. By applying the convex optimization tools, successive convex approximation (SCA) and Lagrange dual approaches, we solve the optimization problem then we propose an efficient iterative algorithm. Numerical results confirm that the proposed scheme can provide a better performance compared to the orthogonal multiple access (OMA), random position of UAVs in NOMA (RP-NOMA) and OMA (RP-OMA) schemes in both of the transmit power and sum-rate performance metrics.

[1] Gan et al., “Energy efficient switch policy for small cells”, China Communincations, vol. 12, no. 1, pp. 78-88, 2015.
[2] Abdelnasser, E. Hossain, D. I. Kim, “Tier-aware resource allocation in ofdma macrocell-small cell networks”, IEEE Transactions on Communications, vol. 63, no. 3, pp. 695-710, 2015.
[3] Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs”, IEEE Transactions on Wireless Communications, vol. 15, no. 6, pp. 3949-3963, 2016.
[4] Orfanus, E. P. de Freitas, and F. Eliassen, “Self-organization as a supporting paradigm for military UAV relay networks”, IEEE Communications Letters, vol. 20, no. 4, pp. 804-807, 2016.
[5] P. Valavanis and G. J. Vachtsevanos, “Handbook of unmanned aerial vehicles”, Springer, 2015.
[6] Zeng, R. Zhang, and T. J. Lim, “Wireless communications with unmanned aerial vehicles: Opportunities and challenges”, IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42, 2016.
[7] M. Azari, F. Rosas, K.-C. Chen, and S. Pollin, “Joint sum-rate and power gain analysis of an aerial base station”, In 2016 IEEE Globecom Workshops (GC Wkshps), 2016: IEEE, pp. 1-6.
[8] Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Wireless communication using unmanned aerial vehicles (UAVs): Optimal transport theory for hover time optimization”, IEEE Transactions on Wireless Communications, vol. 16, no. 12, pp. 8052-8066, 2017.
[9] Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications”, IEEE Transactions on Wireless Communications, vol. 16, no. 11, pp. 7574-7589, 2017.
[10] Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks”, IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp. 2109-2121, 2018.
[11] Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage”, IEEE Communications Letters, vol. 20, no. 8, pp. 1647-1650, 2016.
[12] Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage”, IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 434-437, 2017.
[13] Zeng and R. Zhang, “Energy-efficient UAV communication with trajectory optimization”, IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747-3760, 2017.
[14] Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for UAV-enabled mobile relaying systems”, IEEE Transactions on Communications, vol. 64, no. 12, pp. 4983-4996, 2016.
[15] Li, W. Ni, X. Wang, R. P. Liu, S. S. Kanhere, and S. Jha, “Energy-efficient cooperative relaying for unmanned aerial vehicles”, IEEE Transactions on Mobile Computing, vol. 15, no. 6, pp. 1377-1386, 2015.
[16] Ahmed, M. Z. Chowdhury, and Y. M. Jang, “Energy-Efficient UAV-To-User Scheduling to Maximize Throughput in Wireless Networks,” IEEE Access, vol. 8, pp. 21215–21225, 2020.
[17] Zeng et al., “Resource Allocation and Trajectory Optimization for QoE Provisioning in Energy-Efficient UAV-Enabled Wireless Networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7634–7647, 2020.
[18] Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G”, IEEE communications surveys & tutorials, vol. 20, no. 3, pp. 2294-2323, 2018.
[19] نیما نوری، علی­اکبر تدین، «بهینه ­سازی چندهدفه به­منظور تخصیص منابع محاسباتی و مخابراتی مبتنی بر دسترسی نامتعامد، مشارکت سرور ابری و سرور لبه در شبکه­های نسل پنج»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 1، صفحات 462-451، 1399.
[20] فرزاد دهقانی، جعفر پوررستم، «بهبود شاخص عدالت جین و بهینه­سازی مصرف توان فرستنده در سیستم­های NOMA»، مجله مهندسی برق دانشگاه تبریز، جلد 49، شماره 2، صفحات 586-577، 1398.
[21] Yang, Z. Ding, P. Fan, and N. Al-Dhahir, “A General Power Allocation Scheme to Guarantee Quality of Service in Downlink and Uplink NOMA Systems”, IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7244-7257, 2016.
[22] F. Sohail, C. Y. Leow, and S. Won, “Non-orthogonal multiple access for unmanned aerial vehicle assisted communication”, IEEE Access, vol. 6, pp. 22716-22727, 2018.
[23] Cui, Y. Cai, Z. Qin, M. Zhao, and G. Y. Li, “Joint Trajectory Design and Power Allocation for UAV-Enabled Non-Orthogonal Multiple Access Systems”, In 2018 IEEE Global Communications Conference (GLOBECOM), 2018: IEEE, pp. 1-6.
[24] K. Sharma and D. I. Kim, “UAV-enabled downlink wireless system with non-orthogonal multiple access”, In 2017 IEEE Globecom Workshops (GC Wkshps), 2017: IEEE, pp. 1-6.
[25] Hu, Q. Zhang, Q. Li, and J. Qin, “Joint Position, Decoding Order, and Power Allocation Optimization in UAV-Based NOMA Downlink Communications,” IEEE Systems Journal, vol. 14, no. 2, pp. 2949–2960, 2020.
[26] Masaracchia, L. D. Nguyen, T. Q. Duong, C. Yin, O. A. Dobre, and E. Garcia-Palacios, “Energy-Efficient and Throughput Fair Resource Allocation for TS-NOMA UAV-Assisted Communications,” IEEE Transactions on Communications, vol. 68, no. 11, pp. 7156–7169, 2020.
[27] Tse and P. Viswanath, “Fundamentals of Wireless Communication”, Cambridge University Press, 2005.
[28] Masaracchia, L. D. Nguyen, T. Q. Duong, C. Yin, O. A. Dobre, and E. Garcia-Palacios, “Energy-Efficient and Throughput Fair Resource Allocation for TS-NOMA UAV-Assisted Communications,” IEEE Transactions on Communications, vol. 68, no. 11, pp. 7156–7169, 2020.
[29] Yang, X. Cao, C. Yin, Z. Xiao, X. Xi, and D. Wu, “Proactive dronecell deployment: Overload relief for a cellular network under flash crowd traffic,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 10, pp. 2877-2892, 2017.
[30] Hadi and R. Ghazizadeh, “Sub-channel assignment and power allocation in OFDMA-NOMA based heterogeneous cellular networks,” AEU - International Journal of Electronic and Communications, vol. 120, p. 153195, 2020.
[31] C. Research, “CVX: Matlab software for disciplined convex programming, version 2.0”, http://cvxr.com/cvx, Aug 2012.
[32] Wang and L. Vandendorpe, “Iterative Resource Allocation for Maximizing Weighted Sum Min-Rate in Downlink Cellular OFDMA Systems”, IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 223-234, 2011.
[33] Boyd and L. Vandenberghe, “convex optimization”, Cambridge University Press, 2004.
[34] W. K. Ng, E. S. Lo, and R. Schober, “Energy-Efficient Resource Allocation in OFDMA Systems with Large Numbers of Base Station Antennas”, IEEE Transactions on Wireless Communications, vol. 11, no. 9, pp. 3292-3304, 2012.
[35] H. Kha, H. D. Tuan, and H. H. Nguyen, “Fast Global Optimal Power Allocation in Wireless Networks by Local D.C. Programming”, IEEE Transactions on Wireless Communications, vol. 11, no. 2, pp. 510-515, 2012.