[1] A. Rogalski, “Toward third generation HgCdTe infrared detectors,” Journal of alloys and compounds, vol. 371, no. 1-2, pp. 53-57, 2004.
[2] A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” Journal of applied physics, vol. 105, no. 9, pp. 4, 2009.
[3] J. W. Stouwdam, and F. C. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles,” Nano letters, vol. 2, no. 7, pp. 733-737, 2002.
[4] J. Schmitt, and H.-C. Flemming, “FTIR-spectroscopy in microbial and material analysis,” International Biodeterioration & Biodegradation, vol. 41, no. 1, pp. 1-11, 1998.
[5] J. Madejová, “FTIR techniques in clay mineral studies,” Vibrational spectroscopy, vol. 31, no. 1, pp. 1-10, 2003.
[6] A. González, Z. Fang, Y. Socarras, J. Serrat, D. Vázquez, J. Xu, and A. M. López, “Pedestrian detection at day/night time with visible and FIR cameras: A comparison,” Sensors, vol. 16, no. 6, pp. 820, 2016.
[7] S. Briz, A. De Castro, J. Aranda, J. Meléndez, and F. López, “Reduction of false alarm rate in automatic forest fire infrared surveillance systems,” Remote Sensing of Environment, vol. 86, no. 1, pp. 19-29, 2003.
[8] R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature photonics, vol. 4, no. 8, pp. 495-497, 2010.
[9] L. Miller, G. Smith, and G. Carr, “Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes,” Journal of Biological Physics, vol. 29, no. 2, pp. 219-230, 2003.
[10] T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances, vol. 2, no. 4, pp. e1501856, 2016.
[11] N. Nelms, and J. Dowson, “Goldblack coating for thermal infrared detectors,” Sensors and Actuators A: Physical, vol. 120, no. 2, pp. 403-407, 2005.
[12] O. Salvetti, L. A. Ronchi, C. Corsi, A. Rogalski, and M. Strojnik, “Advanced infrared technology and applications,” Advances in Optical Technologies, vol. 2013, pp. 1-2, 2013.
[13] A. Rogalski, M. Kopytko, and P. Martyniuk, “Performance prediction of pin HgCdTe long-wavelength infrared HOT photodiodes,” Applied optics, vol. 57, no. 18, pp. D11-D19, 2018.
[14] I. Izhnin, K. Mynbaev, A. Voitsekhovskii, S. Nesmelov, S. Dzyadukh, A. Korotaev, V. Varavin, S. Dvoretsky, D. Marin, and M. Yakushev, “Electrical and microscopic characterization of p+-type layers formed in HgCdTe by arsenic implantation,” Semiconductor Science and Technology, vol. 35, no. 11, pp. 115019, 2020.
[15] I. I. Izhnin, K. D. Mynbaev, A. V. Voytsekhovskiy, S. N. Nesmelov, S. M. Dzyadukh, O. I. Fitsych, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, and A. Korotaev, “Hall-effect studies of modification of HgCdTe surface properties with ion implantation and thermal annealing,” 2020.
[16] L. Kadanoff, and G. Baym, “Quantum Statistical Mechanics, Benjamin, New York (1962),” 1989.
[17] L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys. JETP, vol. 20, no. 4, pp. 1018-1026, 1965.
[18] R. Kubo, “The fluctuation-dissipation theorem,” Reports on progress in physics, vol. 29, no. 1, pp. 255, 1966.
[19] R. Landauer, “Can a length of perfect conductor have a resistance?,” Physics Letters A, vol. 85, no. 2, pp. 91-93, 1981.
[20] M. Büttiker, “Four-terminal phase-coherent conductance,” Physical review letters, vol. 57, no. 14, pp. 1761, 1986.
[21] R. Landauer, “Conductance determined by transmission: probes and quantised constriction resistance,” Journal of Physics: Condensed Matter, vol. 1, no. 43, pp. 8099, 1989.
[22] P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors,” Opto-electronics review, vol. 22, no. 2, pp. 127-146, 2014.
[23] M. Karimi, M. Kalafi, and A. Asgari, “Numerical optimization of an extracted HgCdTe IR-photodiodes for 10.6-μm spectral region operating at room temperature,” Microelectronics journal, vol. 38, no. 2, pp. 216-221, 2007.
[24] E. Melezhik, J. Gumenjuk-Sichevska, and F. Sizov, “Electron mobility in semi-metal HgCdTe quantum wells: dependence on the well width,” SpringerPlus, vol. 5, no. 1, pp. 1-10, 2016.
[25] انوری فرد.م, “انسداد میدان الکتریکی جانبی از نواحی درین و سورس جهت بهبود اثرات کانال کوتاه در افزاره,“ Nano-SOI. مجله مهندسی برق دانشگاه تبریز, vol. 48, no. 3, pp. 991-998, 1397.
[26] صیفوری. م, امیری. پ, داردس. ا, “تقویتکننده الکترونیکی مقاومت انتقالی برای شبکههای مخابرات نوری با ساختار جدید مبتنی بر پسخور فعال ولتاژ جریان. ,“ مجله مهندسی برق دانشگاه تبریز, vol. 48, no.2, pp.737-744, 1397.
[27] M. Kopytko, A. Kębłowski, P. Madejczyk, P. Martyniuk, J. Piotrowski, W. Gawron, K. Grodecki, K. Jóźwikowski, and J. Rutkowski, “Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode,” Journal of Electronic Materials, vol. 46, no. 10, pp. 6045-6055, 2017.
[28] B. BARUTCU, “DEVELOPMENT OF HIGH PERFORMANCE LONG WAVELENGTH INFRARED HGCDTE FOCAL PLANE ARRAYS,” MIDDLE EAST TECHNICAL UNIVERSITY, 2019.
[29] D. Rode, "Low-field electron transport," Semiconductors and semimetals, pp. 1-89: Elsevier, 1975.
[30] H. Ehrenreich, “Band structure and transport properties of some 3–5 compounds,” Journal of Applied Physics, vol. 32, no. 10, pp. 2155-2166, 1961.
[31] S. Smirnov, H. Kosina, M. Nedjalkov, and S. Selberherr, "A zero field Monte Carlo algorithm accounting for the pauli exclusion principle." pp. 185-193,2003.
[32] S. Derelle, S. Bernhardt, R. Hardar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo Study of $hbox {Hg} _ {0.7}hbox {Cd} _ {0.3}hbox {Te} $ e-APD,” IEEE transactions on electron devices, vol. 56, no. 4, pp. 569-577, 2009.
[33] H. Arabshahi, “Simulations of electron transport in GaN devices,” Durham University, 2002.
[34] H. Arabshahi, and A. Mowlavi, “Low-field electron transport properties in zincblende and wurtzite GaN structures using an iteration model for solving Boltzmann equation,” Modern Physics Letters B, vol. 23, no. 10, pp. 1359-1366, 2009.
[35] H. Arabshahi, “Calculation of Electron Hall Mobility in GaSb, GaAs and GaN Using an Iterative Method,” The African Review of Physics, vol. 2, no. 1, 2009.
[36] S. Poncé, W. Li, S. Reichardt, and F. Giustino, “First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials,” Reports on Progress in Physics, vol. 83, no. 3, pp. 036501, 2020.
[37] C. Jacoboni, Theory of electron transport in semiconductors: a pathway from elementary physics to nonequilibrium Green functions: Springer Science & Business Media, 2010.
[38] B. K. Ridley, Electrons and phonons in semiconductor multilayers: Cambridge University Press, 2009.
[39] M. L. Cohen, and J. R. Chelikowsky, Electronic structure and optical properties of semiconductors: Springer Science & Business Media, 2012.
[40] H. Brooks, "Scattering by ionized impurities in semiconductors." pp. 879-879,1951.
[41] K. F. Brennan, and N. S. Mansour, “Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe,” Journal of applied physics, vol. 69, no. 11, pp. 7844-7847, 1991.
[42] J. Meyer, and F. Bartoli, “Low-temperature electron transport in GaAs,” Solid State Communications, vol. 41, no. 1, pp. 19-22, 1982.
[43] H. Koçer, “Numerical modeling and optimization of HgCdTe infrared photodetectors for thermal imaging,” 2011.
[44] R. Yadava, A. Gupta, and A. Warrier, “Hole scattering mechanisms in Hg 1− x Cd x Te,” Journal of electronic materials, vol. 23, no. 12, pp. 1359-1378, 1994.
[45] J. Dubowski, T. Dietl, W. Szymańska, and R. Gałazka, “Electron scattering in CdxHg1− xTe,” Journal of Physics and Chemistry of Solids, vol. 42, no. 5, pp. 351-362, 1981.
[46] S. D. Yoo, and K. D. Kwack, “Theoretical calculation of electron mobility in HgCdTe,” Journal of applied physics, vol. 81, no. 2, pp. 719-725, 1997.
[47] R. Miles, “A6. 4 Electron and hole mobilities in HgCdTe,” Properties of Narrow Gap Cadmium-based compounds, no. 10, pp. 221, 1994.
[48] W. Higgins, G. Pultz, R. Roy, R. Lancaster, and J. Schmit, “Standard relationships in the properties of Hg1− x Cd x Te,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 7, no. 2, pp. 271-275, 1989.
[49] F. Bartoli, J. Meyer, C. Hoffman, and R. Allen, “Electron mobility in low-temperature Hg 1− x Cd x Te under high-intensity C O 2 laser excitation,” Physical Review B, vol. 27, no. 4, pp. 2248, 1983.
[50] G. Nimtz, G. Bauer, R. Dornhaus, and K. Müller, “Transient carrier decay and transport properties in Hg 1− x Cd x Te,” Physical Review B, vol. 10, no. 8, pp. 3302, 1974.
[51] W. Scott, “Electron Mobility in Hg1− x Cd x Te,” Journal of Applied Physics, vol. 43, no. 3, pp. 1055-1062, 1972.
[52] J. Mroczkowski, J. Shanley, M. Reine, P. LoVecchio, and D. Polla, “Erratum: Lifetime measurement in Hg0. 7Cd0. 3Te by population modulation,” Applied Physics Letters, vol. 38, no. 12, pp. 1033-1033, 1981.
[53] T. Wu, K. Lam, C. Chiang, J. Gong, and S.-J. Yang, “Activation of boron implanted in Hg0. 7Cd0. 3Te by high‐temperature annealing,” Journal of applied physics, vol. 63, no. 10, pp. 4983-4988, 1988.
[54] S. N. Bavani, and M. A. Khezrabad, “The electron mobility in Hg1-xCdxTe (x= 0.22 and 0.3): A comparison between experimental and theoretical results,” Materials Research Bulletin, vol. 140, pp. 111325, 2021.