[1] H. M. Al-Kadhim and H. S. Al-Raweshidy, “Energy Efficient Data Compression in Cloud Based IoT,” IEEE Sens. J., vol. 21, no. 10, pp. 12212–12219, 2021.
[2] A. Biason, C. Pielli, A. Zanella, and M. Zorzi, “Access control for IoT nodes with energy and fidelity constraints,” IEEE Trans. Wirel. Commun., vol. 17, no. 5, pp. 3242–3257, 2018.
[3] L.-M. Ang, K. P. Seng, A. M. Zungeru, and G. K. Ijemaru, “Big sensor data systems for smart cities,” IEEE Internet Things J., vol. 4, no. 5, pp. 1259–1271, 2017.
[4] ث. عمویی و ک. میرزایی, “«فشرده سازی تصویر توسط چندی سازی برداری مبتنی بر الگوریتم کرم شب تاب بهبودیافته»,” مجله مهندسی برق دانشگاه تبریز, vol. 42, no. 2, pp. 693–707, 1398.
[5] م. مگری and ه. گرایلو, “فشرده سازی سیگنالهای الکترومایوگرام مبتنی بر هموارسازی به کمک تکنیک پیشتاکید-واتاکید,” مجله مهندسی برق دانشگاه تبریز, vol. 42, no. 4, pp. 1837–1848, 1398.
[6] ط. محمود and ج. سپیده, “فشرده سازی سیگنالهای ژنوم با کمک حسگری فشرده و کاربرد آن در مقایسه دنباله های ژنی,” مجله مهندسی برق دانشگاه تبریز, vol. 42, no. 1, pp. 307–316, 1398.
[7] T. M. Cover and J. A. Thomas, “Elements of information theory.” Hoboken, NJ: Wiley-Interscience, pp. 301–346, 2006.
[8] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies, “Data compression and harmonic analysis,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2435–2476, 1998.
[9] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. theory, vol. 52, no. 2, pp. 489–509, 2006.
[10] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. theory, vol. 52, no. 4, pp. 1289–1306, 2006.
[11] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?,” IEEE Trans. Inf. theory, vol. 52, no. 12, pp. 5406–5425, 2006.
[12] C. Weidmann and M. Vetterli, “Rate distortion behavior of sparse sources,” IEEE Trans. Inf. theory, vol. 58, no. 8, pp. 4969–4992, 2012.
[13] F. Abramovich, T. Sapatinas, and B. W. Silverman, “Wavelet thresholding via a Bayesian approach,” J. R. Stat. Soc. Ser. B (Statistical Methodol., vol. 60, no. 4, pp. 725–749, 1998.
[14] H. Rosenthal and J. Binia, “On the epsilon entropy of mixed random variables,” IEEE Trans. Inf. Theory, vol. 34, no. 5, pp. 1110–1114, 1988.
[15] A. Elzanaty, A. Giorgetti, and M. Chiani, “Lossy compression of noisy sparse sources based on syndrome encoding,” IEEE Trans. Commun., vol. 67, no. 10, pp. 7073–7087, 2019.
[16] A. Fraysse, B. Pesquet-Popescu, and J.-C. Pesquet, “On the uniform quantization of a class of sparse sources,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3243–3263, 2009.
[17] W.-H. Chen and C. Smith, “Adaptive coding of monochrome and color images,” IEEE Trans. Commun., vol. 25, no. 11, pp. 1285–1292, 1977.
[18] E. Y. Lam and J. W. Goodman, “A mathematical analysis of the DCT coefficient distributions for images,” IEEE Trans. image Process., vol. 9, no. 10, pp. 1661–1666, 2000.
[19] N. Kamaci, Y. Altunbasak, and R. M. Mersereau, “Frame bit allocation for the H. 264/AVC video coder via Cauchy-density-based rate and distortion models,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 8, pp. 994–1006, 2005.
[20] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–693, 1989.
[21] P. Moulin and J. Liu, “Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors,” IEEE Trans. Inf. Theory, vol. 45, no. 3, pp. 909–919, 1999.
[22] A. Antoniadis, D. Leporini, and J. Pesquet, “Wavelet thresholding for some classes of non–Gaussian noise,” Stat. Neerl., vol. 56, no. 4, pp. 434–453, 2002.
[23] M. Aramideh, E. Namjoo, and M. Nooshyar, “Non-strictly Sparse Source Modelling Using Heavy-tailed Distributions for DCT Coefficients,” in 2019 27th Iranian Conference on Electrical Engineering (ICEE), 2019, pp. 1570–1575.
[24] L. Palzer and R. Timo, “Fixed-length compression for letter-based fidelity measures in the finite blocklength regime,” in Information Theory (ISIT), 2016 IEEE International Symposium on, 2016, pp. 2424–2428.
[25] L. Palzer and R. Timo, “A lower bound for the rate-distortion function of spike sources that is asymptotically tight,” in Information Theory Workshop (ITW), 2016 IEEE, 2016, pp. 101–105.
[26] M. Leinonen, M. Codreanu, M. Juntti, and G. Kramer, “Rate-distortion performance of lossy compressed sensing of sparse sources,” IEEE Trans. Commun., vol. 66, no. 10, pp. 4498–4512, 2018.
[27] A. Kipnis, G. Reeves, Y. C. Eldar, and A. J. Goldsmith, “Compressed sensing under optimal quantization,” in 2017 IEEE international symposium on information theory (ISIT), 2017, pp. 2148–2152.
[28] M. Kaaniche, A. Fraysse, B. Pesquet-Popescu, and J.-C. Pesquet, “Accurate rate-distortion approximation for sparse Bernoulli-Generalized Gaussian models,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 2020–2024.
[29] A. Cohen, N. Shlezinger, S. Salamatian, Y. C. Eldar, and M. Médard, “Serial quantization for sparse time sequences,” IEEE Trans. Signal Process., 2021.
[30] M. Kaaniche, A. Fraysse, B. Pesquet-Popescu, and J.-C. Pesquet, “A bit allocation method for sparse source coding,” IEEE Trans. Image Process., vol. 23, no. 1, pp. 137–152, 2013.
[31] S. B. Korada and R. L. Urbanke, “Polar codes are optimal for lossy source coding,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1751–1768, 2010.
[32] M. J. Wainwright, E. Maneva, and E. Martinian, “Lossy source compression using low-density generator matrix codes: Analysis and algorithms,” IEEE Trans. Inf. theory, vol. 56, no. 3, pp. 1351–1368, 2010.
[33] A. Golmohammadi, D. G. M. Mitchell, J. Kliewer, and D. J. Costello, “Encoding of Spatially Coupled LDGM Codes for Lossy Source Compression,” IEEE Trans. Commun., vol. 66, no. 11, pp. 5691–5703, 2018.
[34] C. Chen, L. Wang, and S. Liu, “The design of protograph LDPC codes as source codes in a JSCC system,” IEEE Commun. Lett., vol. 22, no. 4, pp. 672–675, 2018.
[35] A. No and T. Weissman, “Rateless lossy compression via the extremes,” IEEE Trans. Inf. theory, vol. 62, no. 10, pp. 5484–5495, 2016.
[36] S. Eghbalian-Arani and H. Behroozi, “On the performance of polar codes for lossy compression of Gaussian sources,” in 2013 Iran Workshop on Communication and Information Theory, 2013, pp. 1–5.
[37] F. Yang, K. Niu, K. Chen, Z. He, and B. Tian, “Design and analysis of lossy source coding of Gaussian sources with finite-length polar codes,” in 2015 IEEE Wireless Communications and Networking Conference (WCNC), 2015, pp. 201–206.
[38] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” in Fundamental Papers in Wavelet Theory, Princeton University Press, 2009, pp. 494–513.
[39] R. L. Haupt and S. Ellen Haupt, “Practical genetic algorithms,” 2004.
[40] F. Müller, “Distribution shape of two-dimensional DCT coefficients of natural images,” Electron. Lett., vol. 29, no. 22, pp. 1935–1936, 1993.
[41] “BIOID-FACEDATABASE.” .
[42] “Xiph.org Video Test Media.” .
[43] K. Krishnamoorthy, “Handbook of Statistical Distributions with Applications,” 2006.