[1] T. Ashley, T. Burke, G. Pryce, A. Adams, A. Andreev, B. Murdin, E. O’Reilly, C. Pidgeon, “InSb 1− x N x growth and devices”, Solid-State Electronics, vol. 47, no. 3, pp. 387-394, 2003.
[2] D. Huang, M.A. Reshchikov, H. Morkoç, “Growth, structures, and optical properties of III-nitride quantum dots”, International journal of high-speed electronics and systems, vol. 12, no. 01, pp. 79-110, 2002.
[3] M. Dworzak, T. Bartel, M. Straßburg, I. Krestnikov, A. Hoffmann, R. Seguin, S. Rodt, A. Strittmatter, D. Bimberg, “Optical properties of InGaN quantum dots”, Superlattices and Microstructures, vol. 36, no. 4-6, pp. 763-772, 2004.
[4] B. Monemar, P. Paskov, A. Kasic, “Optical properties of InN—the bandgap question”, Superlattices and Microstructures, vol. 38, no. 1, pp. 38-56, 2005.
[5] T. Matsuoka, “Progress in nitride semiconductors from GaN to InN-MOVPE growth and characteristics”, Superlattices and Microstructures, vol. 37, no. 1, pp. 19-32, 2005.
[6] M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al (Ga) N quantum dots”, Optics letters, vol. 36, no. 12, pp. 2203-2205, 2011.
[7] D. Williams, A. Andreev, E. O’Reilly, “Dependence of exciton energy on dot size in Ga N∕ Al N quantum dots”, Physical Review B, vol. 73, no. 24, pp. 241301, 2006.
[8] V. Domen, “GaN-based blue laser diodes grown on SiC substrate as light source of high-density optical data storage”, Fujitsu Sci. Tech. J, vol. 34, no. 2, pp. 191-203, 1998.
[9] A. Asgari, E. Ahmadi, M. Kalafi, “AlxGa 1− xN/GaN multi-quantum-well ultraviolet detector based on pin heterostructures”, Microelectronics Journal, vol. 40, no. 1, pp. 104-107, 2009.
[10] A. Asgari, L. Faraone, “SiN passivation layer effects on un-gated two-dimensional electron gas density in AlGaN/AlN/GaN field-effect transistors”, Applied Physics Letters, vol. 100, no. 12, pp. 122106, 2012.
[11] S. Wang, M. Lo, H. Hsiao, H. Ling, C. Lee, “Temperature dependent responsivity of quantum dot infrared photodetectors”, Infrared physics & technology, vol. 50, no. 2, pp. 166-170, 2007.
[12] H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, M. Razeghi, “Quantum dot infrared photodetectors: comparison of experiment and theory”, Physical Review B, vol. 72, no. 8, pp. 085332, 2005.
[13] S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K”, Nature materials, vol. 5, no. 11, pp. 887, 2006.
[14] A. Gueddim, T. Eloud, N. Messikine, N. Bouarissa, “Energy levels and optical properties of GaN spherical quantum dots”, Superlattices and Microstructures, vol. 77, pp. 124-133, 2015.
[15] J. Phillips, P. Bhattacharya, S. Kennerly, D. Beekman, M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors”, IEEE Journal of Quantum Electronics, vol. 35, no. 6, pp. 936-943, 1999.
[16] D. Pan, E. Towe, “Conduction intersubband (In, Ga) As/GaAs quantum dot infrared photodetectors”, Electronics Letters, vol. 34, no. 19, pp. 1883-1884, 1998.
[17] L. Jiang, S. Li, N. Yeh, J. Chyi, C. Ross, K. Jones, “In 0.6 Ga 0.4 As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K”, Applied physics letters, vol. 82, no. 12, pp. 1986-1988, 2003.
[18] Z. Ye, J.C. Campbell, Z. Chen, E. Kim, A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot infrared photodetectors”, Applied physics letters, vol. 83, no. 6, pp. 1234-1236, 2003.
[19] N. Suzuki, N. Iizuka, K. Kaneko, “Simulation of ultrafast GaN/AlN intersubband optical switches”, IEICE transactions on electronics, vol. 88, no. 3, pp. 342-348, 2005.
[20] S.H. Park, W.P. Hong, J. Kim, “Confinement-dependent exciton binding energy in wurtzite GaN/AlxIn1− xN quantum dots”, Superlattices and Microstructures, vol. 109, pp. 254-258, 2017.
[21] A. Asgari, S. Razi, “High performances III-Nitride quantum dot infrared photodetector operating at room temperature”, Optics express, vol. 18, no. 14, pp. 14604-14615, 2010.
[22] S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing”, Physical Review B, vol. 65, no. 8, pp. 081309, 2002.
[23] J. Phillips, P. Bhattacharya, S. Kennerly, D. Beekman, M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors”, IEEE Journal of Quantum Electronics, vol. 35, no. 6, pp. 936-943, 1999.
[24] M. Zavvari, V. Ahmadi, A. Mir, “High performance avalanche quantum dot photodetector for mid-infrared detection”, Optical and Quantum Electronics, vol. 47, no. 5, pp. 1207-1217, 2014.
[25] H. Fazlalipour, A. Asgari, G. Darvish, “Modeling of pyramidal shape quantum dot infrared photodetector: the effects of temperature and quantum dot size”, Journal of Nanophotonics, vol. 12, no. 2, pp. 026006, 2018.
[26] M. Califano, P. Harrison, “Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots”, Physical Review B, vol. 61, no. 16, pp. 10959, 2000.
[27] F. Bernardini, V. Fiorentini, “Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences”, physica status solidi (b), vol. 216, no. 1, pp. 391-398, 1999.
[28] A. Asgari, M. Kalafi, L. Faraone, “Effects of partially occupied sub-bands on two-dimensional electron mobility in Al x Ga 1− x N/GaN heterostructures”, Journal of applied physics, vol. 95, no. 3, pp. 1185-1190, 2004.
[29] H. Liu, “Quantum dot infrared photodetector”, Optoelectronics Review, no. 1, pp. 1-6, 2003.
[30] Z. Ye, J. C. Campbell, Z. Chen, E.T. Kim, A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity”, IEEE journal of quantum electronics, vol. 38, no. 9, pp. 1234-1237, 2002.