Electronic Properties of Various Graphene Quantum Dot Structures: an Ab Initio Study

Document Type : Original Article

Authors

1 Department of Electronics, Mechanics, Electrical and Computer Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Electronics, Faculty of Electrical and Computer Engineering, Nano-Plasmo Photonic Research Group, Tarbiat Modares University, Tehran, Iran

Abstract

Density functional theory (DFT) and thermal DFT (thDFT) calculations were used to evaluate the energy band structure, bandgap, and the total energy of various graphene quantum dots (GQDs). The DFT calculations were performed using local density approximation for the exchange-correlation functional and norm-conserving pseudopotentials. We consider the triangular and hexagonal GQDs with zigzag and armchair edges and 1-3 nm dimensions with many hundred atoms. The simulation results show that all of these GQDs are direct bandgap semiconductors with a flat band structure, and they are suitable for electronics and optoelectronics applications. Analysis of GQDs in which the A and B sublattice symmetries were broken showed degenerate zero-energy shells. Using the thDFT calculations carried out at temperatures up to 1400 K, we evaluated the temperature dependence of the GQDs bandgaps and total energies via entropy-term and electron’s kinetic energy. The obtained results indicate that the ground-state DFT calculations are valid for determining the electronic properties of GQDs up to room temperature. Moreover, we tune semi-empirical parameters of the tight-binding model by the DFT results in small GQDs to reduce the computational cost of electronic structure calculations for large GQDs, which contained up to thousands of atoms.

Keywords


[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, vol. 306,no. 5696, pp. 666-669, October 2004.
[2]
A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, et al., "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, vol. 7,no. 11, pp. 4598-4810, September 2015.
[3] زهرا حمزوی زرقانی و علیرضا یاحقی، « استفاده از گرافن برای شکل‎دهی تنظیم‎پذیر استوانه عایق»، مجله مهندسی برق دانشگاه تبریز، دوره49، شماره 4، صفحه 1569-1576، 1398.
[4] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, "Chaotic Dirac Billiard in Graphene Quantum Dots", Science, vol. 320,no. 5874, pp. 356-358, March 2008.
[5] کریم عباسیان، سید سالار حسینی و هادی صوفی، « افزایش بازده سلول خورشیدی GaAs مبتنی برساختار p-i-n باند میانی توسط نقاط کوانتومی InAs در ناحیه ذاتی آن»، مجله مهندسی برق دانشگاه تبریز، دوره 49، شماره 3، صفحه 1167-1174، 1398.
[6] Y.-W. Son, M. L. Cohen, and S. G. Louie, "Energy Gaps in Graphene Nanoribbons", Physical Review Letters, vol. 97,no. 21, pp. 216803-216811, November 2006.
[7] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, "Edge state in graphene ribbons: Nanometer size effect and edge shape dependence", Physical Review B, vol. 54,no. 24, pp. 17954-17961, 1996.
[8] K. Wakabayashi, K.-i. Sasaki, T. Nakanishi, and T. Enoki, "Electronic states of graphene nanoribbons and analytical solutions", Science and Technology of Advanced Materials, vol. 11,no. 5, pp. 054504-054522, October 2010.
[9] Z. Jin, P. Owour, S. Lei, and L. Ge, "Graphene, graphene quantum dots and their applications in optoelectronics", Current Opinion in Colloid & Interface Science, vol. 20,no. 1, pp. 439–453, December 2015.
[10] J. S. Yang, D. A. Martinez, and W.-H. Chiang, "Synthesis, Characterization and Applications of Graphene Quantum Dots", in Recent Trends in Nanomaterials: Synthesis and Properties, Z. H. Khan, Ed., ed Singapore: Springer, pp. 65-120, 2017.
[11] J. Güttinger, T. Frey, C. Stampfer, T. Ihn, and K. Ensslin, "Spin States in Graphene Quantum Dots", Physical Review Letters, vol. 105,no. 11, pp. 116801-116811, September 2010.
[12] J. A. McGuire, "Growth and optical properties of colloidal graphene quantum dots", physica status solidi (RRL) – Rapid Research Letters, vol. 10,no. 1, pp. 91-101, January 2016.
[13] J. M. Arrieta, "Tight-Binding Description of Graphene Nanostructures", in Modeling of Plasmonic and Graphene Nanodevices, ed Singapore: Springer, pp. 95-183, 2014.
[14] M. Zarenia, A. Chaves, G. A. Farias, and F. M. Peeters, "Energy levels of triangular and hexagonal graphene quantum dots: A comparative study between the tight-binding and Dirac equation approach", Physical Review B, vol. 84,no. 24, pp. 245403-245414, December 2011.
[15] D. S. Sholl and J. A. Steckel, Density Functional Theory: A Practical Introduction, New Jersey: Wiley, 2009.
[16] J. Kohanoff, Electronic Structure Calculation for Solids and Molecules, Theory and Computational Methods, Cambridge: Cambridge University Press, 2006.
[17] امیرحسین بیانی، داریوش دیده‎بان و نگین معزی، « کاهش جریان دوقطبی در ترانزیستور اثر میدان نانونوار ژرمانن با استفاده از همپوشانی گیت بر درین و کاهش میزان ناخالصی در ناحیه درین »، مجله مهندسی برق دانشگاه تبریز، دوره 49، شماره 4، صفحه 1527-1532، 1398.
 [18] R. Das, N. Dhar, A. Bandyopadhyay, and D. Jana, "Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study", Journal of Physics and Chemistry of Solids, vol. 99,no. 1, pp. 34-42, December 2016.
[19] H. Riesen, C. Wiebeler, and S. Schumacher, "Optical Spectroscopy of Graphene Quantum Dots: The Case of C132", The Journal of Physical Chemistry A, vol. 118,no. 28, pp. 5189-5195, July 2014.
[20] S. S. R. K. C. Yamijala, M. Mukhopadhyay, and S. K. Pati, "Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study", The Journal of Physical Chemistry C, vol. 119,no. 21, pp. 12079-12087, May 2015.
[21] I. Ozfidan, M. Korkusinski, and P. Hawrylak, "Electronic properties and electron–electron interactions in graphene quantum dots", physica status solidi (RRL) – Rapid Research Letters, vol. 10,no. 1, pp. 13-23, January 2016.
[22] Y. Li, H. Shu, S. Wang, and J. Wang, "Electronic and Optical Properties of Graphene Quantum Dots: The Role of Many-Body Effects", The Journal of Physical Chemistry C, vol. 119,no. 9, pp. 4983-4989, March 2015.
[23] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials", Journal of Physics: Condensed Matter, vol. 21,no. 39, pp. 395502-395514, September 2009.
[24] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, et al., "Advanced capabilities for materials modelling with Quantum ESPRESSO", Journal of Physics: Condensed Matter, vol. 29,no. 46, pp. 465901-465917, October 2017.
[25] J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems", Physical Review B, vol. 23,no. 10, pp. 5048-5079, May 1981.
[26] D. R. Hamann, M. Schlüter, and C. Chiang, "Norm-Conserving Pseudopotentials", Physical Review Letters, vol. 43,no. 20, pp. 1494-1497, November 1979.
[27] D. R. Hamann, "Generalized norm-conserving pseudopotentials", Physical Review B, vol. 40,no. 5, pp. 2980-2987, August 1989.
[28] B. Mandal, S. Sarkar, and P. Sarkar, "Exploring the electronic structure of graphene quantum dots", Journal of Nanoparticle Research, vol. 14,no. 12, pp. 1317-1325, November 2012.
[29] B. Bienfait and P. Ertl, "JSME: a free molecule editor in JavaScript", Journal of Cheminformatics, vol. 5,no. 1, pp. 24-37, May 2013.
[30] A. Kokalj, "XCrySDen—a new program for displaying crystalline structures and electron densities", Journal of Molecular Graphics and Modelling, vol. 17,no. 3, pp. 176-179, June 1999.
[31] K. Momma and F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", Journal of Applied Crystallography, vol. 44,no. 6, pp. 1272-1276, November 2011.
[32] K. Momma and F. Izumi, "VESTA: a three-dimensional visualization system for electronic and structural analysis", Journal of Applied Crystallography, vol. 41,no. 3, pp. 653-658, May 2008.
[33] R. V. Kukta and L. B. Freund, "Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate", Journal of the Mechanics and Physics of Solids, vol. 45,no. 11, pp. 1835-1860, November 1997.
[34] J. C. Smith, F. Sagredo, and K. Burke, "Warming Up Density Functional Theory", in Frontiers of Quantum Chemistry, M. J. Wójcik, H. Nakatsuji, B. Kirtman, and Y. Ozaki, Eds., ed Singapore: Springer, pp. 249-271, 2018.
[35] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, "Accurate Homogeneous Electron Gas Exchange-Correlation Free Energy for Local Spin-Density Calculations", Physical Review Letters, vol. 112,no. 7, pp. 076403-076408, February 2014.
[36] T. Sjostrom and J. Dufty, "Uniform electron gas at finite temperatures", Physical Review B, vol. 88,no. 11, pp. 115123-115131, September 2013.
[37] J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy", Physical Review B, vol. 45,no. 23, pp. 13244-13249, June 1992.
[38] J. Taylor, H. Guo, and J. Wang, "Ab initio modeling of quantum transport properties of molecular electronic devices", Physical Review B, vol. 63,no. 24, pp. 24540701-24540713, June 2001.
[39] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations", Physical Review B, vol. 13,no. 12, pp. 5188-5192, June 1976.
[40] A. D. Güçlü, P. Potasz, and P. Hawrylak, "Zero-energy states of graphene triangular quantum dots in a magnetic field", Physical Review B, vol. 88,no. 15, pp. 155429-155443, October 2013.
[41] P. Potasz, A. D. Güçlü, and P. Hawrylak, "Zero-energy states in triangular and trapezoidal graphene structures", Physical Review B, vol. 81,no. 3, pp. 033403-033415, January 2010.
[42] F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, "Linear-scaling density-functional-theory calculations of electronic structure based on real-space grids: design, analysis, and scalability test of parallel algorithms", Computer Physics Communications, vol. 140,no. 3, pp. 303-314, November 2001.
[43] Y. Zhang, W. Sheng, and Y. Li, "Dark excitons and tunable optical gap in graphene nanodots", Physical Chemistry Chemical Physics, vol. 19,no. 34, pp. 23131-2313