[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, vol. 306,no. 5696, pp. 666-669, October 2004.
[2]
A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, et al., "Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems", Nanoscale, vol. 7,no. 11, pp. 4598-4810, September 2015.
[3] زهرا حمزوی زرقانی و علیرضا یاحقی، « استفاده از گرافن برای شکلدهی تنظیمپذیر استوانه عایق»، مجله مهندسی برق دانشگاه تبریز، دوره49، شماره 4، صفحه 1569-1576، 1398.
[4] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, "Chaotic Dirac Billiard in Graphene Quantum Dots", Science, vol. 320,no. 5874, pp. 356-358, March 2008.
[5] کریم عباسیان، سید سالار حسینی و هادی صوفی، « افزایش بازده سلول خورشیدی GaAs مبتنی برساختار p-i-n باند میانی توسط نقاط کوانتومی InAs در ناحیه ذاتی آن»، مجله مهندسی برق دانشگاه تبریز، دوره 49، شماره 3، صفحه 1167-1174، 1398.
[6] Y.-W. Son, M. L. Cohen, and S. G. Louie, "Energy Gaps in Graphene Nanoribbons", Physical Review Letters, vol. 97,no. 21, pp. 216803-216811, November 2006.
[7] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, "Edge state in graphene ribbons: Nanometer size effect and edge shape dependence", Physical Review B, vol. 54,no. 24, pp. 17954-17961, 1996.
[8] K. Wakabayashi, K.-i. Sasaki, T. Nakanishi, and T. Enoki, "Electronic states of graphene nanoribbons and analytical solutions", Science and Technology of Advanced Materials, vol. 11,no. 5, pp. 054504-054522, October 2010.
[9] Z. Jin, P. Owour, S. Lei, and L. Ge, "Graphene, graphene quantum dots and their applications in optoelectronics", Current Opinion in Colloid & Interface Science, vol. 20,no. 1, pp. 439–453, December 2015.
[10] J. S. Yang, D. A. Martinez, and W.-H. Chiang, "Synthesis, Characterization and Applications of Graphene Quantum Dots", in Recent Trends in Nanomaterials: Synthesis and Properties, Z. H. Khan, Ed., ed Singapore: Springer, pp. 65-120, 2017.
[11] J. Güttinger, T. Frey, C. Stampfer, T. Ihn, and K. Ensslin, "Spin States in Graphene Quantum Dots", Physical Review Letters, vol. 105,no. 11, pp. 116801-116811, September 2010.
[12] J. A. McGuire, "Growth and optical properties of colloidal graphene quantum dots", physica status solidi (RRL) – Rapid Research Letters, vol. 10,no. 1, pp. 91-101, January 2016.
[13] J. M. Arrieta, "Tight-Binding Description of Graphene Nanostructures", in Modeling of Plasmonic and Graphene Nanodevices, ed Singapore: Springer, pp. 95-183, 2014.
[14] M. Zarenia, A. Chaves, G. A. Farias, and F. M. Peeters, "Energy levels of triangular and hexagonal graphene quantum dots: A comparative study between the tight-binding and Dirac equation approach", Physical Review B, vol. 84,no. 24, pp. 245403-245414, December 2011.
[15] D. S. Sholl and J. A. Steckel, Density Functional Theory: A Practical Introduction, New Jersey: Wiley, 2009.
[16] J. Kohanoff, Electronic Structure Calculation for Solids and Molecules, Theory and Computational Methods, Cambridge: Cambridge University Press, 2006.
[17] امیرحسین بیانی، داریوش دیدهبان و نگین معزی، « کاهش جریان دوقطبی در ترانزیستور اثر میدان نانونوار ژرمانن با استفاده از همپوشانی گیت بر درین و کاهش میزان ناخالصی در ناحیه درین »، مجله مهندسی برق دانشگاه تبریز، دوره 49، شماره 4، صفحه 1527-1532، 1398.
[18] R. Das, N. Dhar, A. Bandyopadhyay, and D. Jana, "Size dependent magnetic and optical properties in diamond shaped graphene quantum dots: A DFT study", Journal of Physics and Chemistry of Solids, vol. 99,no. 1, pp. 34-42, December 2016.
[19] H. Riesen, C. Wiebeler, and S. Schumacher, "Optical Spectroscopy of Graphene Quantum Dots: The Case of C132", The Journal of Physical Chemistry A, vol. 118,no. 28, pp. 5189-5195, July 2014.
[20] S. S. R. K. C. Yamijala, M. Mukhopadhyay, and S. K. Pati, "Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study", The Journal of Physical Chemistry C, vol. 119,no. 21, pp. 12079-12087, May 2015.
[21] I. Ozfidan, M. Korkusinski, and P. Hawrylak, "Electronic properties and electron–electron interactions in graphene quantum dots", physica status solidi (RRL) – Rapid Research Letters, vol. 10,no. 1, pp. 13-23, January 2016.
[22] Y. Li, H. Shu, S. Wang, and J. Wang, "Electronic and Optical Properties of Graphene Quantum Dots: The Role of Many-Body Effects", The Journal of Physical Chemistry C, vol. 119,no. 9, pp. 4983-4989, March 2015.
[23] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials", Journal of Physics: Condensed Matter, vol. 21,no. 39, pp. 395502-395514, September 2009.
[24] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, et al., "Advanced capabilities for materials modelling with Quantum ESPRESSO", Journal of Physics: Condensed Matter, vol. 29,no. 46, pp. 465901-465917, October 2017.
[25] J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems", Physical Review B, vol. 23,no. 10, pp. 5048-5079, May 1981.
[26] D. R. Hamann, M. Schlüter, and C. Chiang, "Norm-Conserving Pseudopotentials", Physical Review Letters, vol. 43,no. 20, pp. 1494-1497, November 1979.
[27] D. R. Hamann, "Generalized norm-conserving pseudopotentials", Physical Review B, vol. 40,no. 5, pp. 2980-2987, August 1989.
[28] B. Mandal, S. Sarkar, and P. Sarkar, "Exploring the electronic structure of graphene quantum dots", Journal of Nanoparticle Research, vol. 14,no. 12, pp. 1317-1325, November 2012.
[29] B. Bienfait and P. Ertl, "JSME: a free molecule editor in JavaScript", Journal of Cheminformatics, vol. 5,no. 1, pp. 24-37, May 2013.
[30] A. Kokalj, "XCrySDen—a new program for displaying crystalline structures and electron densities", Journal of Molecular Graphics and Modelling, vol. 17,no. 3, pp. 176-179, June 1999.
[31] K. Momma and F. Izumi, "VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data", Journal of Applied Crystallography, vol. 44,no. 6, pp. 1272-1276, November 2011.
[32] K. Momma and F. Izumi, "VESTA: a three-dimensional visualization system for electronic and structural analysis", Journal of Applied Crystallography, vol. 41,no. 3, pp. 653-658, May 2008.
[33] R. V. Kukta and L. B. Freund, "Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate", Journal of the Mechanics and Physics of Solids, vol. 45,no. 11, pp. 1835-1860, November 1997.
[34] J. C. Smith, F. Sagredo, and K. Burke, "Warming Up Density Functional Theory", in Frontiers of Quantum Chemistry, M. J. Wójcik, H. Nakatsuji, B. Kirtman, and Y. Ozaki, Eds., ed Singapore: Springer, pp. 249-271, 2018.
[35] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, "Accurate Homogeneous Electron Gas Exchange-Correlation Free Energy for Local Spin-Density Calculations", Physical Review Letters, vol. 112,no. 7, pp. 076403-076408, February 2014.
[36] T. Sjostrom and J. Dufty, "Uniform electron gas at finite temperatures", Physical Review B, vol. 88,no. 11, pp. 115123-115131, September 2013.
[37] J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation energy", Physical Review B, vol. 45,no. 23, pp. 13244-13249, June 1992.
[38] J. Taylor, H. Guo, and J. Wang, "Ab initio modeling of quantum transport properties of molecular electronic devices", Physical Review B, vol. 63,no. 24, pp. 24540701-24540713, June 2001.
[39] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations", Physical Review B, vol. 13,no. 12, pp. 5188-5192, June 1976.
[40] A. D. Güçlü, P. Potasz, and P. Hawrylak, "Zero-energy states of graphene triangular quantum dots in a magnetic field", Physical Review B, vol. 88,no. 15, pp. 155429-155443, October 2013.
[41] P. Potasz, A. D. Güçlü, and P. Hawrylak, "Zero-energy states in triangular and trapezoidal graphene structures", Physical Review B, vol. 81,no. 3, pp. 033403-033415, January 2010.
[42] F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, "Linear-scaling density-functional-theory calculations of electronic structure based on real-space grids: design, analysis, and scalability test of parallel algorithms", Computer Physics Communications, vol. 140,no. 3, pp. 303-314, November 2001.
[43] Y. Zhang, W. Sheng, and Y. Li, "Dark excitons and tunable optical gap in graphene nanodots", Physical Chemistry Chemical Physics, vol. 19,no. 34, pp. 23131-2313