Time Resource Management in Cognitive Radar Using Adaptive Waveform Design

Document Type : Original Article

Authors

1 Electrical Engineering Faculty, Malek Ashtar Technical University, Tehran, Iran

2 Electrical Engineering Faculty, Malek Ashtar Technical University, Tehran, Iran.

3 Electrical Engineering Faculty, Tarbiat Modares University, Tehran, Iran

Abstract

Cognitive Radar is a recently presented research topic, in which most efforts has been done for its conceptual description and the adaptive waveform design feature of these radars, while other aspects of additivity for optimum performance of cognitive radars has been ignored. In this paper, a framework for adaptive time resource management in Cognitive Radars is proposed. The main purpose of this paper is proposing an algorithm for time resource management, with incorporation of adaptive waveform design capability of cognitive radars, to enhance the radar performance for an efficient time resource usage. After developing the equations of radar time resource management using adaptive waveform design, an implementable algorithm is proposed for this purpose and its performance is simulated and analysed. The results show that the proposed algorithm resulted in more efficient time resource management compared to the existing ones.

Keywords


[1] B. Gillespie, E. Hughes, and M. Lewis, “Scan scheduling of multi-function phased array radars using heuristic techniques”, In IEEE International Radar Conference, May 2005,  Arlington, USA, pp. 513–518.
[2] S. Haykin, “Cognitive Radar: a way of the future”, IEEE Signal Processing Magazine, vol. 23, no. 1, pp. 30-40, 2006.
[3] S. Haykin, Y. Xue, M. P. Setoodeh, “Cognitive radar: step toward bridging the gap between neuroscience and engineering”, Proceedings of IEEE, vol. 100, no. 11, pp. 3102-3130, 2012.
[4] S. Haykin, A. Zia, I. Arasaratnam, Y. Xue,  “Cognitive tracking radar”, In IEEE Radar Conference, May 2010, Washington DC, USA, pp. 1467-1470.
[5] M. S. Greco, F. Gini, P. Stinco, “Cognitive radars: some applications”, In Global Conference on Signal and Information Processing, December 2016, Washington DC, USA, pp. 1077-1082.
[6] M. Greco, F. Gini, P. Stinco, K. Bell, “Cognitive radars: on the road to reality”, IEEE Signal Processing Magazine, vol. 35, no. 4, pp. 112-125, 2018.
[7] B. Jin, J. Gou, B. Su, D. He, Z. Zhang, “Adaptive Waveform Selection For Manoeuvring Target Tracking in Cognitive Radar”, Elsevier Digital Signal Processing, vol. 75, pp. 210-221, 2018.
[8] A. E. Mitchell, G. E. Smith, K. L. Bell, A. Duly, “Fully Adaptive Radar Cost Function Design”, In IEEE Radar Conference (Radar Conf. 2018), April 2018, Oklahoma City USA, pp. 1301-1306.
[9] X. Le, “Waveform Design for Tracking Systems”, In International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, September 2015, Xi'an China, pp. 458-462.  
[10] K. L. Bell, C. J. Baker, G. E. Smith, J. T. Johnson, M. Rangaswamy, “Cognitive Radar Framework for Target Detection and Tracking”, IEEE Journal of Selected Topics in Signal Processing, vol. 9, iss. 8, pp. 1427-1439, 2015.
[11] N. H. Nguyen, K. Dogancay, L.M. Davis, “Adaptive Waveform Selection For Target Tracking In Clutter By Multi-static Radar System”, IEEE Transactions On Aerospace And Electronic Systems, vol. 51, no. 1, pp. 688-701, 2015.
[12]  ابراهیم باقری، محمد حسین کهایی، محمد جباریان، علی اصغر بهشتی، “طراحی شکل موج ارسالی رادار به منظور بالا بردن دقت تخمین تاخیر و فرکانس داپلر هدف”، مجله مهندسی برق دانشگاه تبریز، جلد ۴۶، شماره ۳، پاییز ۱۳۹۵.
[13] N. H. Nguyen, K. Dogancay, L.M. Davis, “Adaptive Waveform Scheduling For Target Tracking In Clutter By Multi-static Radar System”, In IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), May 2014, Florence, Italy, pp. 1449-1453
[14] X. Wu, Z. Liu, R. Xie, X. Mu, “Adaptive Waveform Design for Enhanced Detection of Extended Target”, In CIE International Conference on Radar (RADAR), October 2016, Guangzhou China.
[15] M. Ghadian, R. Fatemi Mofrad, B. Abbasi Arand, “Designing Adaptive Time Resource Management Cost Function for Cognitive Radar”, IET Radar, Sonar & Navigation, 2020.
[16] M. Shaghaghi, R. Adve, Z. Ding, “Multifunction Cognitive Radar Task Scheduling Using Monte Carlo Tree Search and Policy Networks”, IET Radar, Sonar & Navigation, vol. 12, pp. 1437-1447, 2018.
[17] بهروز صفری نژادیان، مجتبی اسد، “ارائه دو فیلتر کالمن مرتبه کسری جدید برای سیستم های مرتبه کسری خطی در حضور نویز اندازه گیری رنگی”، مجله مهندسی برق دانشگاه تبریز، جلد ۴۷، شماره ۲، تابستان ۱۳۹۶.
[18] M. Orton, W. Fitzgerald, “A Bayesian Approach to Tracking Multiple Targets Using Sensor Arrays and Particle Filters”, IEEE Transactions On Signal Processing, vol. 50, no. 2, pp. 216-223, 2002.
[19] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems”, Transactions of the ASME–Journal of Basic Engineering, pp. 35-45, 1960.
[20] P. J. Costa, “Adaptive Model Architecture and Extended Kalman – Bucy Filters”, IEEE Transactions on Aerospace Electronic Systems, vol. 30, pp. 525–533, 1994.
[21] E.A. Wan, R.v.d. Merwe, “The Unscented Kalman filter For Nonlinear Estimation”,  in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, October. 2000, Alberta, Canada.
[22] K. Ito, K. Xiong, “Gaussian Filters for Nonlinear Filtering Problems”, IEEE Transactions On Automatic Control, vol. 45, no. 5, pp. 910-927, 2000.
[23] M. Sanjeev Arulampalam, S. Maskell, N. Gordon, T. Clapp, “A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking”, IEEE Transactions in Signal Processing, vol. 50, no. 2, pp. 174-188, 2002.
[24] S. Wang, D. Bi, H. Ruan, S. Chen, “Cognitive Structure Adaptive Particle Filter for Radar Manoeuvring Target Tracking”,  IET Radar, Sonar & Navigation, vol. 13, pp. 23-30, 2019.
[25] R. Merwe, N. de Freitas, A. Doucet, E. Wan, “The Unscented Particle filter”, Technical Report CUED/FINFENG/TR380, Engineering Department, Cambridge University, 2000.
[26] S. Julier, J. Uhlmann, H.F. Durrant-Whyte, “A New Method for the Nonlinear Transformation of Means and Covariance In filters And Estimators”, IEEE Transactions on autumn. Control, pp. 477–482, 2000.
[27] N. Cui, L. Hong, J. Layne, “A Comparison of Nonlinear filtering approaches with an application to ground target tracking”, Elsevier Signal Processing, vol. 85, pp. 1469-1492, 2005.
[28] M. Steck, C. Neumann, M. Bockmair, “Cognitive Radar Principles and Application to Interference Reduction”, In the 19th International Radar Symposium IRS, June 2018, Bonn Germany.
[29] D. Kershaw, J. Evans, “Optimal Waveform Selection for Tracking Systems”, IEEE Transactions On Information Theory, vol. 40, no. 5, pp. 1536-1550, September 1994.
[30] L. U. Medina, J. Grajal, “Implementation of the fully adaptive radar framework: practical limitations”, IEEE Radar Conference (Radar Conf. 2017), May 2017, Seattle USA, pp. 761-766.
[31] G. Van Keuk, S. S. Blackman, “On phased array radar tracking and parameter control”, IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no.1, pp. 186-194, 1993.
[32] J. H. Zwanga, Y. Boers, H. Driessen, “On Tracking Performance Constrained MFR Parameter Control”, Sixth International Conference of Information Fusion, July 2005, Queensland, Australia, pp. 712-718.
[33] H.J. Shin, S.N. Hong, D.H. Hong,  "Adaptive Update Rate target tracking for Phased  Array Radar. IEE Proceedings - Radar, Sonar Navigation, vol. 142, no. 3, pp. 137-143. 1995.