Identification and Determination of Contribution of Current Harmonics and Unbalanced in Microgrids Equipped with Advanced Metering Infrastructure

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran

2 Department of Electrical Engineering, Faculty of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

3 Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Tabriz University, Tabriz, Iran

Abstract

The use of distributed generation resources (grid-connected or islanded) such as solar systems and wind turbines in the form of microgrids can solve problems related to traditional power systems. On the other hand, the monitoring of power quality disturbances in microgrids is an important issue for compensating these problems. Among the various types of power quality disturbances, harmonic distortions are important. Accordingly, in this paper, a computational method has been used based on the recursive least squares withthe variable forgetting factor (VFF-RLS). The prominent features of the proposed method are its high accuracy and speed, as well as identification with a low rate of signal samples. The main aim of the proposed method is to identify the contribution and extent of harmonics and unbalanced in a microgrid equipped with Advanced Metering Infrastructure (AMI). In the proposed method, the identification is based on real-time estimation and using measured data with high computational speed and accuracy. The results of simulation by MATLAB software, and as well as the experimental results using the TMS320F2812 digital signal processor (DSP) show the validity of the proposed method.

Keywords


[1] سامان درویش کرمانی، محمود جورابیان، گئورک قره‌پتیان، «معماری ریزشبکه‌های با نقاط اتصال چندگانه به چندین شبکه و یا ریزشبکه‌های دیگر»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 3، صفحه 1105-1115، پاییز 1397.
[2] G. Yang-yang, C. Zhi-yuan, Z. Qing-song, Z. Guan-feng, “New reactive islanding detected method for microgrid”, In Power System Technology (POWERCON) IEEE International Conference on, November2016, Wollongong, Australia, pp. 1-6.
[3] R. Majumder, “A hybrid microgrid with DC connection at back to back converters”, IEEE Transactions on Smart Grid , vol. 5, no. 1, pp. 251-259, 2014.
[4] S.C. Huang, C.N. Lu, Y.L. Lo, “Evaluation of AMI and SCADA data synergy for distribution feeder modelling”, IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1639-1647, 2015.
[5] Y. Wang, H. Qiu, Y. Tu, Q. Liu, Y. Ding, W. Wang, “A Review of Smart Metering for Future Chinese Grids”, Energy Procedia, vol. 152, pp. 1194-1199, 2018.
[6] J.L. Rueda, C.A. Juárez, I. Erlich, “Wavelet-based analysis of power system low-frequency electromechanical oscillations”, IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1733-1743, 2011.
[7] X.H. Peng, Q. Zhou, X.Y. Cao, “A high precision combinational optimization algorithm of power grid harmonic/inter-harmonic signal detection”, Power System Protection and Control, vol. 42, no. 23, pp. 95-101, 2014.
[8] A.K. Broen, M. Amin, E. Skjong, M. Molinas, “Instantaneous frequency tracking of harmonic distortions for grid impedance identification based on Kalman filtering”, In Control and Modeling for Power Electronics (COMPEL), IEEE 17th Workshop on, September 2016, Trondheim, Norway, pp. 1-7.
[9] A. Yazdaninejadi, A. Hamidi, S. Golshannavaz, F. Aminifar, S. Teimourzadeh, “Impact of inverter-based DERs integration on protection, control, operation, and planning of electrical distribution grids”, The Electricity Journal, vol. 32, no. 6, pp. 43-56, 2019.
[10] O. Homaee, A. Zakariazadeh, S. Jadid, “Real time voltage control using emergency demand response in distribution system by integrating ,advanced metering infrastructure”, Journal of Renewable and Sustainable Energy, vol 6, no. 3, pp. 033145, 2014.
[11] H. Chen, Y. He, J. Xiao, M. Liu, D. Wang, “Harmonics detection based on a combination of continuous wavelet transform and discrete wavelet transform”, Power System Protection and Control, vol. 43, no. 20, pp. 71-75, 2015.
[12] X. Tang, K. M. Tsang, W. L. Chan, “A power quality compensator with DG interface capability using repetitive control”, IEEE Transactions on Energy Conversion, vol. 27, no. 2, pp. 213-219, 2012.
[13] A. K. Sharma, O. P. Mahela, S. R. Ola, “Detection of power quality disturbances using discrete wavelet transform”, In 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), May2017, Bhopal, India, pp. 1-5.
[14] Y. Du, L. Du, B. Lu, R. Harley, T. Habetler, “A review of identification and monitoring methods for electric loads in commercial and residential buildings”, In Energy Conversion Congress and Exposition (ECCE) IEEE, November 2010, Atlanta, USA, pp. 4527-4533.
[15] R. R. Mohassel, A. S. Fung, F. Mohammadi, K. Raahemifar, “A survey on Advanced Metering Infrastructure”, Electrical Power and Energy Systems, vol. 63, pp. 473-484, 2014.
[16] R. Cisneros-Magaña, A. Medina, V. Dinavahi, A. Ramos-Paz, “Time-Domain Power Quality State Estimation Based on Kalman Filter Using Parallel Computing on Graphics Processing Units”, IEEE Access,vol. 6, pp. 21152-21163, 2018.
[17] J. Malvar, Ó. López, A. G. Yepes, A. Vidal, F. D. Freijedo, P. Fernández-Comesaña, J. Doval-Gandoy, “Graphical diagram for subspace and sequence identification of time harmonics in symmetrical multiphase machines”, IEEE Transactions on Industrial Electronics, vol. 61, no. 1, pp. 29-42, 2014.
[18] رضا باقری، جواد شکرالهی مغانی، گئورک قره پتیان، «جداسازی سهم مشترک و شبکه در اغتشاشات هارمونیکی بر مبنای یک مدل بهبودیافته»، مجله امیرکبیر، دوره 39، شماره 1، صفحه 35-45، بهار و تابستان 1387.
[19] M. Farhoodnea, A. Mohamed, H. Shareef, H. Zayandehroodi, “An enhanced method for contribution assessment of utility and customer harmonic distortions in radial and weakly meshed distribution systems”, International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 222-229, 2012.
[20] D. Vujatovic, K. Leong Koo, Z. Emin, “Methodology of calculating harmonic distortion from multiple traction loads”, Electric Power Systems Research, vol. 138, pp. 165-171, 2016.
[21] M. I. Marei, E. F. El-Saadany, M. M.A. Salama, “A flexible DG interface based on a new RLS algorithm for power quality improvement”, IEEE Systems Journal, vol 6, no. 1, pp. 68-75, 2012.
[22] مریم‌السادات اخوان حجازی، جواد ابراهیمی، مریم صباغ‌پورآرانی، گئورک قره‌پتیان، «تشخیص برخط عیب‌های مکانیکی سیم پیچ ترانسفورماتور با استفاده از تخمین تابع تبدیل کانال انتشار موج UWB»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 4، صفحه 1307-1315، زمستان 1396.
[23] C. Xiangwen, C. Xiaoke, Y. Jianhua, W. Zhuo, Z. Jinquan, “A PLS-SVM-based method of general single-phase harmonic load identification”, In 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), June 2018, Guilin, China, pp. 102-105.
[24] A. Moradifar, A. Akbari Foroud, M. Fouladi, “Identification of multiple harmonic sources in power system containing inverter-based distribution generations using empirical mode decomposition”, IET Generation, Transmission & Distribution, vol. 13, no. 8, pp. 1401-1413, 2019.
[25] سینا نظری، سعید اسماعیلی، فرزاد کریم‌زاده، «شناسایی و دسته بندی اغتشاشات تکی و ترکیبی کیفیت توان با استفاده از روشی مبتنی بر تحلیل مؤلفه های مستقل»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 1، صفحه 381-392، بهار 1397.