Delay Scheduling in TCSC Control to Improve Power Oscillation Damping

Document Type : Original Article

Authors

1 Electrical and Computer Engineering Department, Islamic Azad University, North Tehran Branch, Tehran, Iran

2 Electrical and Computer Engineering Department, Islamic Azad University, Science and Research Branch, Tehran, Iran,

3 Electrical and Computer Engineering Department, University of K. N. Toosi, Tehran, Iran,

Abstract

Wide area power oscillation damping (WAPOD) is a very effective controller to damp out the inter-area electromechanical oscillations in the wide area power systems. This controller requires communication networks to receive the remote outputs. The use of communication networks causes delays in feedback loops. This delay reduces the controller's performance. Therefore, in order to improve the performance of the control system in the presence of delay, in this paper a WAPOD controller is designed using delay scheduling for the TCSC supplemental control. To select control structure, a method is proposed that allows optimization of stability in the range of delay. To design the controller, the the real part of the rightmost electromechanical mode is minimized. Case studies is based on a four-machine power system. Effectiveness of the proposed WAPOD controller is verified by simulation studies and compared with a conventional delayed design approach.

Keywords


[1] مهدی، کراری، دینامیک و کنترل سیستم‌های قدرت، چاپ اول، ویرایش اول، مرکز نشر دانشگاه صنعتی امیر کبیر، 1382.
[2] M. M. Farsangi, H. Nezamabadi-pour, Y. H. Song, and K. Y. Lee, “Placement of SVCs and selection of stabilizing signals in power systems,” IEEE Trans. Power Syst., vol. 22, no. 3, pp. 1061–1071, Aug. 2007.
[3] F. Milano, “Small-Signal Stability Analysis of Large Power Systems With Inclusion of Multiple Delays,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 3257-3266, 2016.
[4] M. Zarghami, M. L. Crow, J. Sarangapani, Y. Liu, and S. Atcitty, “Anovel approach to interarea oscillation damping by unified power flow controllers utilizing ultracapacitors,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 404–412, Feb. 2010.
[5] M. Bhadu, N. Senroy, I. N. Kar, and G. N. Sudha, "Robust linear quadratic Gaussian-based discrete mode wide area power system damping controller," IET Generation, Trans. & Dist., Vol. 10, no.6 , 2016.
[6] M. Mokhtari, F. Aminifar, D. Nazarpour, and S. Golshannavaz, “Wide area power oscillation damping with a fuzzy controller compensating the continuous communication delays,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1997–2005, 2013.
[7] سعید اباذری، مجتبی برخورداری و عباس عرب دردری «طراحی کنترل‌کننده مقاوم SVC مبتنی بر WAMS با در نظر گرفتن نامعینی تأخیر زمانی سیگنال‌های راه دور» مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، زمستان 1394.
[8] T. Vyhlidal, and M. Hromcik, "Parameterization of input shapers with delays of various distribution," Automatica 59, 256–263 (2015).
[9] T. Vyhlidal, N. Olgac, and V. Kucera, "Delayed resonator with acceleration feedback Complete stability analysis by spectral methods and vibration absorber design," Journal of Sound and Vibration 333, 6781–6795, 2014.
[10] W. Yao, L. Jiang, J. Wen, Q. H. Wu, and S. Cheng, “Wide-Area Damping Controller of FACTS Devices for Inter-Area Oscillations Considering Communication Time Delays,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 318–329, 2014.
[11] J. Li, Z. Chen, D. Cai, W. Zhen and Q. Huang, “Delay-Dependent Stability Control for Power System with Multiple Time-Delays,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2316–2326, 2016.
[12] B. Yang, and Y. Sun, “IEEE A Novel Approach to Calculate Damping Factor Based Delay Margin for Wide Area Damping Control,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3116–3117, 2014.
[13] B. Yang and Y. Sun, “Damping Factor Based Delay Margin for Wide Area Signals in Power System Damping Control,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3501–3502, Aug. 2013.
[14] J. Li, Z. Chen, D. Cai, W. Zhen and Q. Huang, “Delay-Dependent Stability Control for Power System with Multiple Time-Delays,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2316–2326, 2016.
[15] Y. Li, Y. Zhou, F. Liu, Y. Cao, and C. Rehtanz, "Design and Implementation of Delay-Dependent Wide-Area Damping Control for Stability Enhancement of Power Systems," IEEE Transactions on Smart Grid, Vol. 8, no.4 , July 2017.
[16] W. Yao, L. Jiang, Q. Wu, J. Wen, and S. Cheng, “Delay-dependent stability analysis of the power system with a wide-area damping controller embedded,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 233–240, Feb. 2011.
[17] B. Yang and Y. Z. Sun, "A new wide area damping controller design method considering signal transmission delay to damp inter area oscillations in power system," springer, Vol. 21, no. 11, pp. 4193–4198, Nov. 2014.
[18] M. M. Farsangi, H. Nezamabadi-Pour, Y.-H. Song, and K. Y. Lee, “Placement of SVCs and selection of stabilizing signals in power systems,” IEEE Trans. Power Syst., vol. 22, no. 3, pp. 1061–1071, 2007.
[19] A. Heniche and I. Kamwa, “Assessment of two methods to select wide-area signals for power system damping control,” IEEE Trans. Power Syst., vol. 23, no. 2, pp. 572–581, 2008.
[20] W. Juanjuan, F. Chuang, and Z. Yao, “Design of WAMS-based multiple HVDC damping control system,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 363–374, 2011.
[21] داود فاتح، علی‌اکبر بیرجندی و رضا ابراهیم‌پور «افزایش میرایی نوسانات سیستم قدرت با جایابی UPFC بر اساس ضریب مانده و مدهای بحرانی» مجله مهندسی برق تبریز، جلد 44، شماره 3، 1394.
[22] M. V. Wal and B. Jager, "A review of methods for input/output selection," Automatica vol. 37 pp. 487-510, 2001.
[23] L. Cheng, G. Chen, W. Gao, F. Zhang and G. Li, “Adaptive Time Delay Compensator (ATDC) Design for Wide-Area Power System Stabilizer,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2957–2966, 2014.
[24] W. Yao, L. Jiang, J. Wen, Q. Wu and S. Cheng, "Wide-area damping controller for power system inter-area oscillations: a networked predictive control approach," IEEE Trans. Cont. Tech., vol. 23, no. 1, pp. 27–36, 2015.
[25] M. Beiraghi and A. M. Ranjbar, "Adaptive delay compensator for the robust wide-area damping controller design," IEEE Trans. Power Syst., vol. 31, no. 1, pp. 4966–4976, 2016.
[26] Y. Shen, W. Yao, J. Wen and H. He, "Adaptive wide-area power oscillation damper design for photovoltaic plant considering delay compensation," IET Generation, Transmission & Distribution, vol. 11, no. 18, pp. 4511-4519, 2017.
[27] X. Zhang, C. Lu, X. Xie, and Z. Y. Dong, "Stability Analysis and Controller Design of a Wide-Area Time-Delay System Based on the Expectation Model Method," IEEE Trans. Smart Grid, Vol. 7, no. 1, pp. 520-529, 2016.
[28] W. Michiels and N. S. lulian, Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach, Philadelphia: SIAM, 2007.
[29] http://cs.nyu.edu/overton/software/hanso/, 2009.
[30] D. Breda, and R. Vermiglio, “Stability of Linear Delay Differential Equations a Numerical Approach with MATLAB,’’ New York Heidelberg Dordrecht London: Springer, 2015.
[31] http://eps.ee.kth.se/personal/vanfretti/pst.
[32] Nguyen Tuan Anh, Luigi Vanfretti, Member, IEEE, Dirk Van Hertem, Senior Member, IEEE, and Johan Driesen, Senior Member, IEEE, “A Quantitative Method to Determine ICT Delay Requirements for Wide-Area Power System Damping Controllers,” IEEE Trans. on Powe. Syst., Vol.30, no. 4, 2015.
[33] J. H. Chow, S. G. Ghiocel, "An adaptive wide-area power system damping controller using synchrophasor data", Control Optim. Methods Elect. Smart Grids Power Electron. Power Syst., vol. 3, no. 3, pp. 327-342, 2012.