Security Constrained Operation of Radial Micro Grids Based on the Loads’ Vulnerabilities and Flexibilities

Document Type : Original Article

Authors

1 Faculty of Electrical Engineering, Abbaspour School of Engineering, Shahid Beheshti University, Tehran, Iran,

2 Faculty of Electrical Engineering, Abbaspour School of Engineering, Shahid Beheshti University, Tehran, Iran

3 Faculty of Electrical and electronics Engineerin, Shiraz University of Technology, Shiraz, Iran

Abstract

This paper proposes a mathematical model for the short-term security constrained operation problem in a radial Microgrid. The conventional security modeling in the transmission system is not appropriate for radial networks, where, a line outage creates an island and usually leads to the load shedding. This paper proposes a security model for the radial Microgrid using the consumers’ damage indices. In addition, it analyses the load control effects. It includes these contingency state constraints in the short-term scheduling: power balance in the island, allowed frequency deviation range, island’s capability to continue the service and load sensitivity to the duration of the abnormal condition. Hourly scheduling of the resources, loads and power exchange with the main grid is performed with the aim of minimizing the load damage in the contingency states and maximizing the profit at this selected security level. The proposed model is applied to IEEE 123-bus test system.  It reduces the load damage index at least 38% in comparison to the other operational strategies. The cost-benefit assessment is performed to analyze the proposed method in different viewpoints.  

Keywords


[1]      Winter Meeting, vol. 1, pp. 305–308, 2002.
[2]      N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power and Energy Magazine, vol. 5, no. 4, pp. 78–94, 2007.
[3]      F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, “Microgrids management,” IEEE Power and Energy Magazine, vol. 6, no. 3, pp. 54-65, 2008.
[4]      A. J. Wood and B. F. Wollenberg, Power generation, operation, and control. John Wiley & Sons, 2012.
[5]      D. Issicaba, J. A. P. Lopes, and M. A. da Rosa, “Adequacy and security evaluation of distribution systems with distributed generation,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1681–1689, 2012.
[6]      محسن رمضان زاده، میثم جعفری نوکندی، تقی بارفروشی، «برنامه‌ریزی تولید و ذخیره‌ منابع تولید حرارتی در شرایط عدم‌قطعیت تولید بادی و بار در حضور ذخیره‌ساز انرژی و پاسخگویی سمت تقاضا»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 2، صفحه 665-653، تابستان 1397.
[7]      احد عابسی، وحید وحیدی نسب، محمدصادق قاضی‌زاده، «بررسی تاثیر حضور منابع تولید پراکنده ولتاژ ثابت بر کنترل توزیع‌شده ولتاژ شبکه‌های هوشمند با بهره‌گیری از مصرف‌کننده نهایی»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، صفحه 275-267، بهار 1395.
[8]      M. Marzband, F. Azarinejadian, M. Savaghebi, E. Pouresmaeil, J. M. Guerrero, and G. Lightbody, “Smart Transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations,” Renewable Energy, vol. 126, pp. 95–106, 2018.
[9]      M. Marzband, MM. Moghaddam, MF. Akorede and G. Khomeyrani, “Adaptive load shedding scheme for frequency stability enhancement in microgrids”, Electric Power Systems Research, vol. 140, pp.78-86, 2016.
[10]      B. Khorramdel, H. Khorramdel, J. Aghaei, A. Heidari, and V. G. Agelidis, “Voltage security considerations in optimal operation of bevs/phevs integrated microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1575–1587, 2015.
[11]      D. Jayaweera, “Security enhancement with nodal criticality-based integration of strategic micro grids,” IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 337–345, 2015.
[12]      L. E. L. Ramirez, H. T. S´anchez, and F. A. P. Mart´ınez, “Market clearing model for microgrids with probabilistic security criteria: Formulation and implementation,” Simposio Internacional Sobre la Calidad de la Energ´ıa El´ectrica-SICEL, vol. 8, 2015.
[13]      S. Mashayekh and K. L. Butler-Purry, “An integrated security-constrained model-based dynamic power management approach for isolated microgrids in all-electric ships,” IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 2934–2945, 2015.
[14]      M. Vahedipour-Dahraie, H. Rashidizaheh-Kermani, H. R. Najafi, A. Anvari-Moghaddam, and J. M. Guerrero, “Coordination of evs participation for load frequency control in isolated microgrids,” Applied Sciences, vol. 7, no. 6, p. 539, 2017.
[15]      M. A. Akbari, J. Aghaei, M. Barani, M. Savaghebi, M. Shafie-khah, J. Guerrero, and J. P. Catalao, “New metrics for evaluating technical benefits and risks of dgs increasing penetration,” IEEE Transactions on Smart Grid, vol. 8, no. 6, p. 2890-2902, 2017.
[16]      L. H. Koh, P. Wang, F. H. Choo, K.-J. Tseng, Z. Gao, and H. B. P¨uttgen, “Operational adequacy studies of a pv-based and energy storage stand-alone microgrid,” IEEE Transactions on power systems, vol. 30, no. 2, pp. 892–900, 2015.
[17]      A. C. Z. de Souza, M. Santos, M. Castilla, J. Miret, L. G. de Vicu˜na, and D. Marujo, “Voltage security in ac microgrids: a power flow-based approach considering droop-controlled inverters,” IET Renewable Power Generation, vol. 9, no. 8, pp. 954–960, 2015.
[18]      S. Abedi, M. He, and S. M. Fatemi, “Employing price-responsive pevs in microgrid: Optimal operations and security management,” IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, 2015.
[19]      S. Talari, M. Yazdaninejad, and M.-R. Haghifam, “Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads,” IET Generation, Transmission & Distribution, vol. 9, no. 12, pp. 1498–1509, 2015.
[20]      G. Liu, M. Starke, B. Xiao, and K. Tomsovic, “Robust optimisation-based microgrid scheduling with islanding constraints,” IET Generation, Transmission & Distribution, vol. 11, no. 7, pp. 1820-1828, 2017.
[21]      A. Gholami, T. Shekari, F. Aminifar, and M. shahidehpour, “Microgrid scheduling with uncertainty: the quest for resilience,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2849–2858, 2016.
[22]      T. Shekari, F. Aminifar, and M. Sanaye-Pasand, “An analytical adaptive load shedding scheme against severe combinational disturbances,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4135–4143, 2016.
[23]      Distribution System Analysis Subcommittee. IEEE 123 Node Test Feeder, 1992, http://www.sites.ieee.org/pes-testfeeders/resources.