[1] Systems Design with Special Arithmetic and Number Systems, Springer International Publishing, 2017.
[2] امیر سزاوار، حسن فرسی، سجاد محمدزاده، «بازیابی تصویر مبتنی بر محتوا با استفاده از شبکههای عصبی کانولوشن عمیق»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 4، صفحه 1595-1603، زمستان 1397.
[3] پرهام درّی، علی قیاسیان، حسین سعیدی، «طراحی و پیادهسازی رمزنگار AES در بستر FPGA برای خطوط پرسرعت»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 1، صفحه 153-167، بهار 1395.
[4] H.L. Garner, “The residue number system,” IRE Transactions on Electronic Computers, vol. 8, no. 2, pp. 140-147, Jun. 1959.
[5] C.H. Chang, A.S. Molahosseini, A.A. Emrani Zarandi and T.F. Tay, “Residue number systems: a new paradigm to datapath optimization for low-power and high-performance digital signal processing applications,” IEEE Circuits and Systems Magazine, vol. 15, no. 4, pp. 26-44, Nov. 2015.
[6] L. Sousa, S. Antão and P. Martins, “Combining residue arithmetic to design efficient cryptographic circuits and systems,” IEEE Circuits and Systems Magazine, vol. 16, no. 4, pp. 6-32, Nov. 2016.
[7] V. Arrigoni, B. Rossi, P. Fragneto and G. Desoli, “Approximate operations in convolutional neural networks with RNS data representation,” In Proc. of 25th European Symposium on Artificial Neural Networks, Bruges, Belgium, Apr. 26-28 2017.
[8] K. Navi, A.S. Molahosseini and M. Esmaeildoust, “How to teach residue number system to computer scientists and engineers,” IEEE Transactions on Education, vol. 54, no. 1, pp. 156-163, Feb. 2011.
[9] S. J. Piestrak, “Design of residue generators and multioperand modular adders using carry-save adders,” IEEE Transactions on Computers, vol. 43, no. 1, pp. 68-77, Jan. 1994.
[10] A. A. Hiasat, “Arithmetic binary to residue encoders for moduli (2n±2k+1),” IEEE Proceedings - Computers and Digital Techniques, vol. 150, no. 6, pp. 369-374, Nov. 2003.
[11] C. Efstathiou, N. Moschopoulos, K. Tsoumanis and K. Pekmestzi, “On the design of configurable modulo 2n±1 residue generators,” In. Proc. of 15th Euromicro Conference on Digital System Design, Izmir, Turkey, pp. 50-56, 2012.
[12] P. M. Matutino, R. Chaves and L. Sousa, “Arithmetic-based binary-to-RNS converter modulo {2n±k} jn-bit dynamic range,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 3, pp. 603-607, Mar. 2015.
[13] S.J. Piestrak, “A high speed realization of a residue to binary converter,” IEEE Transactions on Circuits and Systems-II, vol. 42, no. 10, pp. 661-663, Oct. 1995.
[14] Y. Wang, X. Song, M. Aboulhamid and H. Shen, “Adder based residue to binary numbers converters for (2n-1, 2n, 2n+1),” IEEE Transactions Signal Processing, vol. 50, no. 7, pp. 1772-1779, Jul. 2002.
[15] B. Cao, C. H. Chang and T. Srikanthan, “An efficient reverse converter for the 4-moduli set {2n-1, 2n, 2n+1, 22n+1} based on the new Chinese remainder theorem,” IEEE Transaction on Circuits and Systems- I, vol. 50, no. 10, pp. 1296-1303, Oct. 2003.
[16] A. Hariri, K. Navi, and R. Rastegar, “A new high dynamic range moduli set with efficient reverse converter,” Journal of Computers and Mathematics with Applications, vol. 55, no. 4, pp. 660-668, Feb. 2008.
[17] A.S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, S. Timarchi, “Efficient reverse converter designs for the new 4-moduli sets {2n–1, 2n, 2n+1, 22n+1–1} and {2n–1, 2n+1, 22n, 22n+1} based on new CRTs,” IEEE Transactions on Circuits and Systems-I, vol. 57, no. 4, pp. 823-835, Apr. 2010.
[18] L. Sousa and S. Antao, “MRC-based RNS reverse converters for the four-moduli sets {2n+1, 2n-1, 2n, 22n+1-1} and {2n+1, 2n-1, 22n, 22n+1-1},” IEEE Transactions on Circuits and Systems II, vol. 59, no. 4, pp. 244-248, Apr. 2012.
[19] A.S. Molahosseini, K. Navi, C. Dadkhah, M. Eshghi. “Efficient MRC-based residue to binary converters for the new moduli sets {22n, 2n−1, 2n+1−1} and {22n, 2n−1, 2n−1−1},” IEICE Transactions on Information and Systems, vol. 92, no. 9, pp. 1628-1638, Sep. 2009.
[20] A.A.E. Zarandi, A.S. Molahosseini, M. Hosseinzadeh, S. Sorouri, S.F. Antão and L. Sousa, “Reverse converter design via parallel-prefix adders: novel components, methodology and implementations,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 374-378, p. 23, Feb. 2015.
[21] A.A.E. Zarandi, A.S. Molahosseini, L. Sousa and M. Hosseinzadeh, “An efficient component for designing signed reverse converters for a class of RNS moduli sets with composite form {2K, 2P-1},” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 48-59, Jan. 2017.
[22] A. S. Molahosseini, A. A. E. Zarandi, P. Martins and L. Sousa, “A Multifunctional Unit for Designing Efficient RNS-Based Datapaths,” IEEE Access, vol. 5, pp. 25972-25986, Dec. 2017.
[23] P.V.A. Mohan, Residue Number Systems: Theory and Applications, Springer International Publishing, 2016.