Fault-Tolerant Control for Multi-rate Networked Control System with Considering Long Time Delay

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Shahid Bahonar University, Kerman, Iran

2 Department of Electrical Engineering, Shahid Bahonar University, Kerman, Iran,

Abstract

In this paper, a new approach of modeling and fault-tolerant control is presented for multi-rate networked control system (MRNCS) with considering long time delay. Firstly, the MRNCS is modeled as a switched system with linear subsystems and a random switching signal. By considering the switching signal (as the result of random induced delay) as a Markov chain, the model of MRNCS is obtained as a Markovian jump linear system. Then a mode-independent dynamic output feedback controller is designed to stabilize the closed-loop system. In continuation, with the purpose of system tolerance against the actuator fault (or load disturbance), a virtual actuator is used so that the reconfiguration is performed without needing for any changes in the main controller. Finally, the quadruple-tank process is used to validate the proposed modeling and control approaches.

Keywords


[1]      محسن بحرینی, طاهره بینازاده, ملیحه مغفوری فرسنگی و جعفر زارعی, «پایدارسازی تصادفی زمان-محدود توسط فیدبک خروجی برای سیستم کنترل تحت‌شبکه با رویکرد سیستم‌های پرش مارکوف»، مجله مهندسی برق دانشگاه تبریز, جلد 46، شماره 2، صفحه 35-25، تابستان 95.
[2]      D. Zhang, P. Shi, Q.-G. Wang, and L. Yu, “Analysis and synthesis of networked control systems: A survey of recent advances and challenges,” ISA Transactions, vol. 66, pp. 376-392, 2017.
[3]      S. Heijmans, R. Postoyan, D. Nešić, N. Noroozi, and M. Heemels, “Stability analysis of networked linear control systems with direct-feedthrough terms,” Automatica, vol. 96, pp. 186-200, 2018.
[4]      Z. Wei, M. S. Branicky, and S. M. Phillips, “Stability of networked control systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84-99, 2001.
[5]      Y. Tipsuwan, and M.-Y. Chow, “Control methodologies in networked control systems,” Control Engineering Practice, vol. 11, no. 10, pp. 1099-1111, 2003.
[6]      Q. Zhu, and G. Xie, “Analysis and modeling of multi-rate networked control systems with long time delay,” Chinese Control and Decision Conf., pp. 2978-2983, 2012.
[7]      X. z. Liu, Y. p. Dai, and L. Gao, “Fault-tolerant control of networked control systems with time-varying delay,” IEEE Int. Conf. on Control and Automation pp. 750-754, 2013.
[8]      C. Tan, L. Li, and H. Zhang, “Stabilization of networked control systems with both network-induced delay and packet dropout,” Automatica, vol. 59, pp. 194-199, 2015.
[9]      X. Lin, A. Hassibi, and J. P. How, “Control with random communication delays via a discrete-time jump system approach,” American Control Conf., vol. 3, pp. 2199-2204, 2000.
[10]      Y. Geng, and B. Liu, “Guaranteed cost control for the multi-rate networked control systems with output prediction,” IEEE Conf. on Information and Automation, pp. 3020-3025, 2015.
[11]      W.-A. Zhang, and L. Yu, “Modelling and control of networked control systems with both network-induced delay and packet-dropout,” Automatica, vol. 44, no. 12, pp. 3206-3210, 2008.
[12]      H. Wang, B. Zhou, C. Lim, R. Lu, and A. Xue, “H∞ fault-tolerant control of networked control systems with actuator failures,” IET Control Theory & Applications, vol. 8, no. 12, pp. 1127-1136, 2014.
[13]      Z. Qixin, L. Guoping, C. Jianyun, and H. Shousong, “Stability analysis of networked control systems with Markov delay,” Int. Conf. on Control and Automation, vol. 2, pp. 720-724, 2005.
[14]      M. Bahreini, and J. Zarei, “Robust fault-tolerant control for networked control systems subject to random delays via static-output feedback,” ISA Transactions, vol. 86, pp. 153-162, 2019.
[15]      S. Cong, and H. Zheng, “Modelling and performance analysis of networked control systems under different driven modes,” Int. Journal of Computer Applications in Technology, vol. 34, no. 3, pp. 192-198, 2009.
[16]      Z. Qixin, L. Hongli, and H. Shousong, “Uniformed model of networked control systems with long time delay,” Journal of Systems Engineering and Electronics, vol. 19, no. 2, pp. 385-390, 2008.
[17]      Z.-H. Guan, C.-X. Yang, and J. Huang, “Stabilization of Networked Control Systems with Random Delays: A New Multirate Method,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 4204-4209, 2008.
[18]      Q. Zhu, B. Xie, and Y. Zhu, “Hinf control for multi-rate networked control systems with both time-delay and packet-dropout,” Chinese Control and Decision Conf., pp. 1983-1988, 2014.
[19]      Y. M. Zhang, and J. Jiang, “Active fault-tolerant control system against partial actuator failures,” IET Control Theory and Applications, vol. 149, no. 1, pp. 95-104, 2002.
[20]      Y. Zhang, and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2, pp. 229-252, 2008.
[21]      X. Yu, and J. Jiang, “Hybrid Fault-Tolerant Flight Control System Design Against Partial Actuator Failures,” IEEE Transactions on Control Systems Technology, vol. 20, no. 4, pp. 871-886, 2012.
[22]      J. Jiang, and X. Yu, “Fault-tolerant control systems: A comparative study between active and passive approaches,” Annual Reviews in Control, vol. 36, no. 1, pp. 60-72, 2012.
[23]      علی خدادادی, مریم شهریاری کاهکشی و عباس چترایی, «ارائه رویکردی نوین برای طراحی کنترل‌کننده تحمل‌پذیر عیب عملگر بر اساس شناسایی عیب», مجله مهندسی برق دانشگاه تبریز, جلد 48، شماره 2، صفحه 608-595، تابستان 97.
[24]      J. H. Richter, T. Schlage, and J. Lunze, “Control reconfiguration of a thermofluid process by means of a virtual actuator,” IET Control Theory & Applications, vol.1, no. 6, pp. 1606-1620, 2007.
[25]      A. M. Amani, A. Afshar, and M. B. Menhaj, “Fault Tolerant Networked Control Systems subject to Actuator Failure using Virtual Actuator technique,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 5465-5470, 2011.
[26]      M. Yadegar, N. Meskin, and A. Afshar, “Fault-tolerant control of linear systems using adaptive virtual actuator,” Int. Journal of Control, pp. 1-13, 2017.
[27]      M. Yadegar, A. Afshar, and N. Meskin, “Fault-tolerant control of non-linear systems based on adaptive virtual actuator,” IET Control Theory & Applications, vol. 11, no. 9, pp. 1371-1379, 2017.
[28]      J. Cieslak, and D. Henry, “A Switching Fault-Hiding Mechanism based on Virtual Actuators and Dwell-Time Conditions,” IFAC-PapersOnLine, vol. 51, no. 24, pp. 703-708, 2018.
[29]      C. Nespoli, M. M. Seron, and J. e. A. D. Don, “Virtual actuator fault tolerant control approach for Markovian jump linear systems,” Latin American Congress of Automatic Control, 2014.
[30]      J. Song, Y. Niu, J. Lam, and Z. Shu, “A Hybrid Design Approach for Output Feedback Exponential Stabilization of Markovian Jump Systems,” IEEE Transactions on Automatic Control, vol. 63, no. 5, pp. 1404-1417, 2018.
[31]      J. Lofberg, “YALMIP: a toolbox for modeling and optimization in MATLAB,” Int. Conf. on Robotics and Automation, pp. 284-289, 2004.
[32]      J. F. Sturm, “Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11, no. 1-4, pp. 625-653, 1999.
[33]      N. Sebe, “Sequential Convex Overbounding Approximation Method for Bilinear Matrix Inequality Problems,” IFAC-PapersOnLine, vol. 51, no. 25, pp. 102-109, 2018.
[34]      W. Chiu, “Method of Reduction of Variables for Bilinear Matrix Inequality Problems in System and Control Designs,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1241-1256, 2017.
[35]      S. Xu, and J. Lam, “A survey of linear matrix inequality techniques in stability analysis of delay systems,” Int. Journal of Systems Science, vol. 39, no. 12, pp. 1095-1113, 2008.
[36]      P. Navrátil, L. Pekař, and R. Matušů, “Control of a Multivariable System Using Optimal Control Pairs: A Quadruple-Tank Process,” IEEE Access, vol. 8, pp. 2537-2563, 2020.
[37]      M. S. Mahmoud, and M. H. Baig, “Networked feedback control for nonlinear systems with random varying delays,” Journal of the Franklin Institute, vol. 351, no. 6, pp. 3145-3162, 2014.
[38]      M. S. Mahmoud, and N. B. Almutairi, “Feedback fuzzy control for quantized networked systems with random delays,” Applied Mathematics and Computation, vol. 290, pp. 80-97, 2016.
[39]      M. Arıcı, and T. Kara, “Improved Adaptive Fault-Tolerant Control for a Quadruple-Tank Process with Actuator Faults,” Industrial & Engineering Chemistry Research, vol. 57, no. 29, pp. 9537-9553, 2018.
[40]      M. Arıcı, and T. Kara, “Model reference adaptive control of a quadruple tank process with actuator faults,” Int. Conf. on Electrical and Electronics Engineering, pp. 861-865, 2017.
[41]      J. Berner, K. Soltesz, T. Hägglund, and K. J. Åström, “An experimental comparison of PID autotuners,” Control Engineering Practice, vol. 73, pp. 124-133, 2018.
[42]      K. H. Johansson, “The quadruple-tank process: a multivariable laboratory process with an adjustable zero,” IEEE Transactions on Control Systems Technology, vol. 8, no. 3, pp. 456-465, 2000.
[43]      P. Roy, and B. K. Roy, “Dual mode adaptive fractional order PI controller with feedforward controller based on variable parameter model for quadruple tank process,” ISA Transactions, vol. 63, pp. 365-376, 2016.
[44]      M. Veronesi, and A. Visioli, “A Technique for Abrupt Load Disturbance Detection in Process Control Systems,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 14900-14905, 2008.
[45]      M. Buciakowski, M. de Rozprza-Faygel, J. Ochałek, and M. Witczak, “Actuator fault diagnosis and fault-tolerant control: Application to the quadruple-tank process,” Journal of Physics: Conf. Series, vol. 570, no. 8, pp. 082002, 2014.
[30]      Q. Fazal, M. Liaquat, and N. Naz, “Robust fault tolerant control of a DC motor in the presence of actuator faults,” Int. Conf. on Sciences and Techniques of Automatic Control and Computer Engineering, pp. 301-333, 2015.