Designing and Analyzing of a Piezoelectric Energy Harvester with Tunable Natural Frequency for WSN Application

Document Type : Original Article


1 1- Department of Electrical Engineering, Faculty of Ghazi tabatabaee, Urmia Branch, Technical and Vocational University (TVU), Urmia, Iran,

2 Faculty of Engineering, University of Urmia, Urmia, Iran


This paper presents a new approach for a Piezoelectric Energy Harvester (PEH) with actuation piezoelectric layer to shift system natural frequency. Beams are consisted of Si and AlN piezoelectric based on MEMS technology and piezoelectric is deposited on Fixed-Fixed beams with mass loading that produces more stress points and generates more power in comparison to other cantilever beam PEHs. This PEH with ability of shifting system natural frequency is designed in the size of 0.25 cm2 using optimum available space. In addition to piezoelectric generating layers, piezoelectric layers for actuation purpose is added on both sides of the beams for possibility of reducing system natural frequency to less than 10 Hz. Accomplished simulation also confirms theoretical calculation done by Partial Differential Equation (PDE) method for a Fixed-Fixed beam with mass loading in the center to estimate natural frequency of the system and generated voltage from piezoelectric effect. Natural frequency of the system in the designed structure without piezoelectric actuation voltage is about 127 Hz that with 1 g acceleration generated ±3.35 volts and 45 µW electrical powers which can be used in wireless sensor network and biosensing applications.


 [1]      سید حسین کشمیری­فر و حمیدرضا بخشی، « بهبود طول عمر و بیشینه سازی پوشش در شبکه حسگر بی سیم خوشه بندی شده با استفاده از مسیریابی چند جهشی»، مجله مهندسی برق دانشگاه تیریز، جلد 47، شماره 4، زمستان 1396.
[2]      R.Andosca, K. Lee, J. Wu, “Efficient vibrational energy harvesting for WSN applications”, in: Invited presentation to the NanoPower Forum Workshop/Darnell Group, San Jose, CA, pp. 18–20, 2009.
[3]      R. R. Vullers, “Micropower Energy harvesters for autonomous wireless sensor nodes: from lab to reality”, in: Sensors Expo and Conference, Chicago, 2009.
[4]      یاسر عظیمی، وحید هاشمی­فرد و جمشید باقرزاده، « تشخیص توزیع شده و مشارکتی حمله کرم چاله در شبکه­های حسگر بی­سیم»، مجله مهندسی برق دانشگاه تیریز، جلد 46، شماره 4، زمستان 1395.
[5]      V. S Mallela, “Trends in Cardiac Pacemaker Batteries”, Indian pacing and Electrophysiology journal, (ISSN0972-6292), 4(4): 2004.
[6]      J. Lueke, W.A. Moussa, “MEMS-Based Power Generation Techniques for Implantable Biosensing Applications”, Sensors, DOI: 10.3390/s110201433, ISSN 1424-8220, 2011.
[7]      A. Nechibvute, A. Chawanda and P. Luhanga, "Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors", Smart Materials Research, vol. 2012, pp. 1-13, 2012.
[8]      W. Wang, “Frequency Analysis of Vibration Energy Harvesting Systems”, Elsevier Science & Technology, Australia, ISBN 012802321X, 9780128023211, 2016.
[9]      H. Yu, J. Zhou, L. Deng and Z. Wen, “A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit”, Sensors, doi:10.3390/s140203323, January 2014.
[10]      A.  Hajati, S.G. Kim, “Ultra-wide bandwidth piezoelectric energy harvesting”, Applied Physics. Lett. 99 (2011) (083105-1-083105-3). Applied Physics. Lett. 99 (083105-1-083105-3) (2011).
[11]      R. Elfrink, S. Matova, C. de Nooijer, M. Jambunathan, M. Goedbloed, J. van  de Molengraft, V. Pop, R.J.M. Vullers, M. Renaud, R. van Schaijk, “Shock induced energy harvesting with a MEMS harvester for automotive applications”, in: Electron Devices Meeting (IEDM), IEEE International, 5–7 Dec. 2011, Washington, D.C., 29.5.1–29.5.4, 2011.
[12]      D. Han, K-S Yun, “Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration”, Microsystem Technologies, DOI: 10.1007/s00542-014-2261-1, Aug 2015.
[13]      E.E. Aktakka, R.L. Peterson, K. Najafi, “Thinned PZT on SOI process and design optimization for piezoelectric inertial energy harvesting”, in: 16th International Conference on Solid-State Sensors, Actuators, and Microsystems, Transducers 2011, Beijing, China, pp. 1649–1652, June 2011.
[14]      R. Andosca, T. Gus McDonald, V. Genova, S. Rosenberg, J. Keating, C, Benedixon, J. Wu, “Experimental and theoretical studies on MEMS piezoelectric vibrational enegy harvesters with mass loading”, Sensors and Actuators. DOI:10.1016/j.sna.2012.02.028, February 2012.
[15]      Y. Jia, S, Du, A.A. Seshia, “Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting”, J. Physics.: Conf. Ser. 660 012030, doi:10.1088/1742-6596/660/1/012030, 2015.
[16]      S. Nabavi, L. Zhang, “Design and Optimization of Wideband Multimode Piezoelectric MEMS Vibration Energy Harvesters”, Eurosensors 2017 Conference, doi: 10.3390/proceedings1040586, 2017.
[17]      B. Kathpalia, D. Tan, I. Stern, F. Valdes, S. Kim and A. Erturk, “Modeling and Characterization of Curved Piezoelectric Energy Harvester for Smart Paver Tiles”, Procedia Computer Science 109C (2017)1060–1066, 2017.
[18]      A. Damya, E. Abbaspour Sani and G. Rezazadeh, "An innovative piezoelectric energy harvester using clamped–clamped beam with proof mass for WSN applications", Microsystem Technologies, 2018.
[19]      "Restriction of Hazardous Substances Directive",, 2018. [Online]. Available: [Accessed: 02- Jun- 2018].
[20]      H. Bhugra, G. Piazza, Microsystems and Nanosystems, Piezoelectric MEMS Resonators (page 215), ISSN 2198-0063, DOI 10.1007/978-3-319-28688-4, Springer International Publishing Switzerland 2017.
[21]      G. Rezazadeh, A. tahmasebi, M. Zubstov, “Application of piezoelectric layers in electrostatic MEM Actuators: controlling of pull-in voltage”, Microsystem Technology, 12:1163-1170, DOI 10.1007/s00542-006-0245-5, 2006.
[22]      L. Meirovitch, Fundamentals of Vibrations, New York: McGraw-Hill, 2001.
[23]      Z. Rahimi, G. Rezazadeh, H. Sadeghian, “Study on the size dependent effective Young modulus by EPI method based on modified couple stress theory”, Microsystem Technologies, DOI: 10.1007/s00542-018-3708-6, January 2018.
[24]      Karimipour, A.R.           Karimipour,Y. Tadi Beni, “Determination of size-dependent non-linear pull-in instability of clamped nano-Beam based on the modified             strain gradient theory using HPM”, Modares Mechanical Engineering, Vol. 15,No.2, pp.101-112, 2015. (in Persianفارسی)
[25]      H. Sadeghian, C.K. Yang, J.f.L Goosen, “Effects of size and defects on the elasticity of silicon nanocantilevers”, Journal of Micromechanics and Microengineering, June 2010.
[26]      A. Erturk, D.J Inman, “A  distributed  parameter  electromechanical  model for cantilevered piezoelectric energy harvesters”, J.Vib. Acoustics 130 (041002-1041002-15) DOI: 10.1115/1.2890402, 2008.
[27]      B.A. Auld, Acoustic Fields and Waves in Solids, vol I, Second ed.,  Krieger Publishing Co., Malabar, Florida, 1990.
[28]      R. Elfrink, T. M.  Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. van  Andel, R. van  Schaijk, “Vibration  Energy  Harvesting  with  Aluminum  Nitride-Based  Piezoelectric, Journal of Micromechanics and Microengineering”,
[29]      S. Roundy, “On the Effectiveness of Vibration-Based Energy Harvesting”, J. Intel. Mat. Syst. Str., 16, pp. 809–823, 2005.
[30]      G. Tang, B. Yang, Ch. Hou, G. Li, J. Liu, X. Chen, Ch. Yang “A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding.” , Scientific reports. DOI: 10.1038/srep38798, 2016.
A.Batra, A.Alomari, M.Aggarwal, and A.Bandyopadhyay, “Energy Harvesting under Excitation of Clamped-Clamped Beam”, Alabama A&M University, March 2016, DOI:10.1117/12.2217701.