A New Down Conversion Active Mixer with High Linearity for WLAN Applications

Document Type : Original Article

Authors

1 Faculty of Electrical and Computer Engineering,, University of Birjand,, Birjand,, Iran

2 Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

Abstract

This paper presents an active down-conversion mixer for wireless local area networks (WLAN) application. The proposed down-conversion mixer is designed for 2-3 GHz radio frequency (RF) band and an intermediate frequency (IF) of 100 MHz using RF-TSMC CMOS 0.18 μm technology. A new fully differential Darlington cell is introduced in the RF transconductance stage to suppress third-order nonlinearity and improve mixer linearity. In addition, the conversion gain (CG) and noise performance of the proposed mixer are improved by using a diode-connected active load and current bleeding technique. The proposed mixer has been simulated by Advanced Design System (ADS) and Spectre-RF softwares. The results of post-layout simulation show the third-order input intercept point (IIP3) can be improved up to 12.5 dBm by optimum biasing of the Darlington cell. The proposed mixer achieves high isolation between ports, the high conversion gain of 14 dB and the low double side-band noise figure (DSB-NF) of 5 dB at the input frequency of 2.4 GHz. The mixer operates at the supply voltage of 1.8 V with power consumption of 17 mW.

Keywords


[1]      الهام بهرامی، حسین شمسی، «تقویت‌کننده لگاریتمی کم‌مصرف و کم‌نویز برای کاربرد ضبط سیگنال‌های زیست-پتانسیل»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 3، صفحه 81-73، 1395.
[2]      Y. Kong and N. Yan, "High gain and low flicker noise down-conversion mixer applied in 24GHz FMCW radar," in 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018: IEEE M.
[3]      پرویز امیری، محمود صیفوری، بابک آفرین، آوا هدایتی پور، «طراحی پیش تقویت‌کننده RGC کم‌نویز مدار مجتمع CMOS با پهنای باند GHz 20 و بهره dBΩ 60 »، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحه 23-15، 1395.
[4]      H. Li, A. M. El-Gabaly and C. E. Saavedra, “A Low-Power Low-Noise Decade-Bandwidth Switched Transconductor Mixer With AC-Coupled LO Buffers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 510-521, 2018.
[5]      M. Vigilante and P. Reynaert, “On the Design of Wideband Transformer-Based Fourth Order Matching Networks for E-Band Receivers in 28-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 52, no. 8, pp. 2071-2082, 2017.
[6]      W.-K. Chong, H. Ramiah, G.-H. Tan, N. Vitee and J. Kanesan, “Design of ultra-low voltage integrated CMOS based LNA and mixer for ZigBee application,” AEU-International Journal of Electronics and Communications, vol. 68, no. 2, pp. 138–142, 2014.
[7]      M. Asghari and M. Yavari, “An IIP3 enhancement technique for CMOS active mixers with a source-degenerated transconductance stage,” Microelectronics Journal, vol. 50, pp. 44-49, 2016.
[8]      M. B. Vahidfar and O. Shoaei, “A high IIP2 mixer enhanced by a new calibration technique for zero-IF receivers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 3, pp. 219-223,
[9]      Y.-S. Lin, M.-H. Kao, H.-R. Pan and K.-S. Lan, “A 90–96 GHz CMOS down-conversion mixer with high conversion gain and excellent LO–RF isolation,” Analog Integrated Circuits and Signal Processing, vol. 93, no. 1, pp. 49-59, 2017.
[10]      H. B. Kia and A. K. Ain, “A high gain and low flicker noise CMOS mixer with low flicker noise corner frequency using tunable differential active inductor,” Wireless personal communications, vol. 79, no. 1, pp. 599-610, 2014.
[11]      M. Parvizi and A. Nabavi, “Low-power highly linear UWB CMOS mixer with simultaneous second-and third-order distortion cancellation,” Microelectronics journal, vol. 41, no. 1, pp. 1-8, 2010.
[12]      R. Mahmou and K. Faitah, “High linearity, low power RF mixer design in 65 nm CMOS technology,” AEU-International Journal of Electronics and Communications, vol. 68, no. 9, pp. 883-888, 2014.
[13]      B. Guo, H. Wang and G. Yang, “A wideband merged CMOS active mixer exploiting noise cancellation and linearity enhancement,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 9, pp. 2084-2091, 2014.
[14]      M. Mollaalipour and H. Miar-Naimi, “An improved high linearity active CMOS mixer: Design and Volterra series analysis,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 8, pp. 2092-2103, 2013.
[15]      S. S. Ho and C. E. Saavedra, “A CMOS broadband low-noise mixer with noise cancellation,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1126-1132, 2010.
[16]      B. Razavi and R. Behzad, RF microelectronics. Prentice Hall New Jersey, 1998.