Stochastic planning of fast charging stations using a coevolutionary algorithm

Document Type : Original Article

Authors

Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

In recent years, electric vehicles have attracted significant attention. For proper use of electric vehicles, determining the location and size of charging stations is essential. In this paper, the problem of fast charging station planning is modeled as a mixed integer nonlinear programming (MINLP). In the proposed method, network reconfiguration possibility is considered. In addition, for the installation planning of fast charging stations, the uncertainties associated with the conventional load level, the charging stations load level and the price of energy are considered. In the proposed method, a scenario-based approach is used to consider the above-mentioned uncertainties. In addition, network reconfiguration is considered as a tool to optimize the objective functions of distribution company. Finally, the efficiency of the proposed method is demonstrated by numerical results.

Keywords


[1]     جمشید آقایی، سید احسان باقری، سجاد شفیعی، طاهر نیک‌نام و سید محسن باقری، «بررسی پاسخ‌گویی شبکه توزیع هوشمند به عملکرد خودروهای الکتریکی هیبریدی قابل اتصال به شبکه»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحه 11-20، 1396.
[2]     جابر پولادی، محمدباقر بناء شریفیان و سودابه سلیمانی، «مدل‌سازی احتمالاتی تقاضای شارژ خودروهای برقی تجمیع‌شده در شبکه توزیع خانگی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 4، صفحه 1369-1357، 1396.
[3]     Z. Liu, F. Wen, and G. Ledwich, “Optimal planning of electric-vehicle charging stations in distribution systems,” IEEE Transactions on Power Delivery, vol. 28, no.1, pp. 102-110, 2013.
[4]     Y. Zheng, Z.Y. Dong, Y. Xu, K. Meng, J.H. Zhao, and J. Qiu, “Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning,” IEEE Transactions on Power Systems, vol. 29, no.1, pp. 221-229, 2014.
[5]     P. Sadeghi-Barzani, A. Rajabi-Ghahnavieh, and H. Kazemi-Karegar, “Optimal fast charging station placing and sizing,” Applied Energy, vol. 125, pp. 289-299, 2014.
[6]     H. Zhang, Z. Hu, Z. Xu, and Y. Song, “An Integrated Planning Framework for Different Types of PEV Charging Facilities in Urban Area,” IEEE Transactions on Smart Grid, vol.7, no.5, pp. 2273-2284, 2015. 
[7]     A.Y. Lam, Y.W. Leung, and X. Chu, “Electric Vehicle Charging Station Placement: Formulation, Complexity, and Solutions,” IEEE Transactions on Smart Grid, vol. 5, no. 6, pp. 2846-2856, 2014.
[8]     W. Yao, J. Zhao, F. Wen, Z. Dong, Y. Xue, Y. Xu, and K. Meng, “A Multi-objective Collaborative Planning Strategy for Integrated Power Distribution and Electric Vehicle Charging Systems,” IEEE Transactions on Industrial Informatics, vol. 29, no.4, pp. 1811-1821, 2014.
[9]     G. Wang, Z. Xu, F. Wen, and K.P. Wong, “Traffic-Constrained Multiobjective Planning of Electric-Vehicle Charging Stations,” IEEE Transactions on Power Delivery, vol. 28, no.4, pp. 2363-2372, 2013.
[10]  S. Guo, and H. Zhao, “Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective,” Applied Energy, vol. 158, pp. 390-402, 2015.
[11]  Y. Xiang, J. Liu, R. Li, F. Li, C. Gu, and S. Tang, “Economic Planning of Electric Vehicle ChargingStations Considering Traffic Constraints and LoadProfile Templates,” Applied Energy, vol. 178, pp. 647-659, 2016.
[12]  A. Awasthi, K. Venkitusamy, S. Padmanaban, R. Selvamuthukumaran, F. Blaabjerg, and A.K. Singh, “Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm,” Energy, vol. 15, no. 133, pp. 70-78, 2017.
[13]  H. Zhang, S. Moura, Z. Hu, and Y. Song, “PEV Fast-Charging Station Siting and Sizing on Coupled Transportation and Power Networks,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2595-2605, 2016.
[14]  X. Dong, Y. Mu, H. Jia, J. Wu, and X. Yu, “Planning of Fast EV Charging Stations on a Round Freeway,” IEEE Transactions on Sustainable Energy, vol. 7, no.4, pp. 1452-1461, 2016.
[15]  H. Zhang, S.J. Moura, Z. Hu, W. Qi, and Y. Song, “A Second Order Cone Programming Model for Planning PEV Fast-Charging Stations,” IEEE Transactions on Power Systems, vol. 33, no.3, pp. 2763-2777, 2017.
[16]  محمدحسن مرادی، مصطفی رضایی مظفر و پرهام محمدعلیزاده، «جایابی و تعیین ظرفیت بهینه منابع انرژی تجدیدپذیر و ایستگاه شارژ خودروی برقی به صورت همزمان با استفاده از الگوریتم بهینه سازی GA-PSO»،  نشریه مهندسی برق و مهندسی کامپیوتر ایران، سال 15، شماره 4، صفحه 258-268، 1396.
[17]  راضیه آقاپور و محمدصادق سپاسیان، «ارائه یک مدل احتمالاتی برای جایابی بهینه ایستگاه‌های شارژ سریع»، نشریه علمی‌پژوهشی کیفیت و بهره‌وری صنعت برق ایران، سال 6، شماره 12، صفحه 11-24، 1396.
[18]  مهران آزاد و محسن قاینی، «ارائه روش جدید برای جایابی ایستگاه های شارژ سریع خودرو برقی در شبکه توزیع با استفاده از الگوریتم ژنتیک»، فصل نامه عصر برق، سال 4، شماره 7، صفحه 20-16، 1396.
[19]  H. Kim, Y. Ko, and K. H. Jung, “Artificial neural-network based feeder reconfiguration for loss reduction in distribution systems,” IEEE Transactions on Power Delivery, vol. 8, no. 3, pp.1356-1366, 1993.
[20]  R.S. Rao, K. Ravindra, K. Satish, and S.V. Narasimham, “Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 317-325, 2013.
[21]  A. Kavousi-Fard, T. Niknam, M.R. Akbari-Zadeh, and B. Dehghan, “Stochastic framework for reliability enhancement using optimal feeder reconfiguration,” Journal of Systems Engineering and Electronics, vol. 25, no. 5, pp. 901-910, 2014.
[22]  M. A. Kashem, V. Ganapathy, and G. B. Jasmon, “Network reconfiguration for load balancing in distribution networks,” IET Proceedings-Generation, Transmission and Distribution, vol. 146, no. 6, pp. 563-567, 1999.
[23]  S. K. Goswami, and S. K. Basu, “A new algorithm for the reconfiguration of distribution feeders for loss minimization,” IEEE Transactions on Power Delivery, vol. 7, no. 3, pp. 1484-1491, 1992.
[24]  D. Shirmohammadi, and H. W. Hong, “Reconfiguration of electric distribution networks for resistive line losses reduction,” IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1492-1498, 1989.
[25]  S. Bae, and A. Kwasinski, “Spatial and Temporal Model of Electric Vehicle Charging Demand,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 394-403, 2012.
[26]  G. Celli, G.G. Soma, F. Pilo, F. Lacu, S. Mocci, and N. Natale, “Aggregated electric vehicles load profiles with fast charging stations,” Power Systems Computation Conference (PSCC), pp. 1-7, 2014.
[27]  A. Bagheri, H. Monsef, and H. Lesani, “Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions,” International Journal of Electrical Power & Energy Systems, vol. 1, no. 73, pp. 56-70, 2015.
[28]  H. Shayeghi, and A. Bagheri, “Dynamic sub-transmission system expansion planning incorporating distributed generation using hybrid DCGA and LP technique,” International Journal of Electrical Power & Energy Systems, vol. 48, pp. 111-122, 2013.
[29]  A.J. Conejo, M. Carrión, and J.M. Morales, Decision making under uncertainty in electricity markets, Springer, 2010.
[30]  S. X. Zhang, C. Y. Chung, K. P. Wong and H. Chen, “Analyzing two-settlement electricity market equilibrium by coevolutionary computation approach,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1155-1164, 2009.
[31]  K. Bernhard, and J. Vygen, Combinatorial optimization: Theory and algorithms, Springer, 2012.
[32]  L. Feng, G. Shaoyun, and H. Liu, “Electric vehicle charging station planning based on weighted voronoi diagram,” Power and Energy Engineering Conference (APPEEC), 2012.
[33]  M. E. Baran, and F. F. Wu, “Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing,” IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1401-1407, 1989.
[34] Transportation Network Test Problems, Available at: https://github.com/bstabler/TransportationNetworks/tree/master/SiouxFalls, Accessed: May 11, 2019.