Target Signal Detection from Efficient Time-Segments of VEP Signal

Document Type : Original Article


1 Electrical Engineering Department, Faculty of Engineering, University of Zanjan, Zanjan, Iran

2 Faculty of Medical, University of Zanjan, Zanjan, Iran


The present study aimed at scheming a novel method of detecting target and non-target signals through selection of appropriate and timely chronic intervals of VEP signal leading to increasing the accuracy of data classification and decreasing the number of features. The suggested method was employed on the P300-Speller databases of the BCI2005 competitions and the data recorded by Hoffman et al. using effective and specified channels and SWLDA classifier.The methods available for determining the P300 signals are within a specified range of about 1 second after each stimulation. To this end, we first outlined the time range of the various components of visual Evoked potential including N20, P50, N100, N170, P300, N400 based on the results obtained from the physiologically-based articles. Then, the time intervals were scored by F-Score and the percentages of correct classifications. The most important and effective components of the VEP were selected by SFS Algorithm  using the SWLDA classifier and the functions of the optimal combinations were compared with the total length of the signal utilizing two other classifiers namely Bayesand K_NN in order to confirm the functionality of the method. The findings, based on the results obtained from ten subjects, indicated that the most important components for detecting target and non-target signals include P300, N100, and N400 respectively. The method suggested here proved to improve the accuracy of output detection by 3.95%.


[1]      B.  Perseh and A. R. Sharafat, “An efficient P300-based BCI using wavelet features and IBPSO-based channel selection,” Journal of Medical Signals and Sensors, vol. 2, pp. 128-143, 2012.
[2]       N. Xu, X. Gao, B. Hong, X. Miao, Sh. Gao, and F. Yang, “BCI competition 2003-data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6, pp. 1067-1072, 2004.
[3]      M. Salvaris and F. Sepulveda, “Wavelets and ensemble of FLDs for P300 classification,” the 4th International IEEE/EMBS Conference on Neural Engineering, Turkey, 2009.
[4]      R. K. Chaurasiya, N. Londhe, and S. Ghosh, “An efficient P300 speller system for brain computer interface,” Signal Processing, Computing and Control (ISPCC), India, 2015.
[5]      L. Jessica, W. Speier, and X. Hu,“The effects of stimulus timing features on P300 speller performance,” Clinical Neurophysiology, vol. 124, no. 2, pp. 306-314, 2013.
[6]      H. Cecotti, R. Phlypo, B. Rivet, M. Congedo, E. Maby, and J. Mattout, “Impact of the time segment analysis for P300 detection with spatial filtering,” 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, Rome, 2010.
[7]      CS. Herrmann, A. Mecklinger, and E. Pfeifer, “Gamma responses and ERPs in a visual classification task,” Clinical Neurophysiology, vol. 110, no. 4, pp. 639-642, 1999.
[8]      S. Campanella, C. Montedoro, E. Streel, P. Verbanck, and V. Rosier, “Early visual components (P100, N170) are disrupted in chronic schizophrenic patients: an event-related potentials study,” Neurophysiol Clinique, vol. 36, no. 2, pp. 71-78, 2006.
[9]      B. Hong, F. Guo, T. Liu, X. Gao, and S. Gao, “N200-speller using motion-onset visual response,” Clinical Neurophysiology, vol.120, no. 9, pp. 1658-1666, 2009.
[10]      C. C. Duncan , R. J. Barry, J. F. Connolly, C. Fischer, P. T. Michie, R. Naatanen, J. Polich, I. Reinvang, and C. Petten, “Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400,” Clinical Neurophysiology, vol. 120, no. 11, pp. 1883-1908, 2009.
[11]      A. Marcano-Cedeño, J. Quintanilla-Domínguez, M. Cortina-Januchs, and D. Andina,“Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network,” Proceedings of the 36th Annual Conference of the IEEE Industrial Electronics Society, IECON 2010, pp. 2845–2850, 2010.
[14]      U. Hoffman, J. M. Vesin, T. Ebrahimi, and K. Diserens, “An efficient P300-based brain-computer interface for disabled subjects,” Journal of Neuroscience Methods, vol. 167, no. 1, pp. 115-125, 2008.
[15]      D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J. Mcfarland, T. M. Vaughan, and J. R. Wolpaw , “A comparison of classification techniques for the P300 Speller,” Journal of Neural Engineering,. vol. 3, no. 4, pp. 299-307, 2006.
[16]      G. D. Johnson and D. J. Krusienski, “Ensemble   SWLDA classifiers for the P300 Speller,” International conference on Human-Computer Interaction, Springer 2009.
[17]      شیما کاشف و حسین نظام‌آبادی‌پور، «یک روش ترکیبی برای یافتن زیرمجموعه ویژگی مؤثر در داده‌های چند برچسبی»، مجله مهندسی برق دانشگاه تبریز، دوره 48، شماره 3، صفحه 1327-1338، پاییز 1397.  [18]      مرتضی جهان‌تیغ و مصطفی چرمی، «افزایش صحت طبقه‌بندی سیگنال‌های EEG تصور حرکتی با ترکیب منطقی طبقه‌بندها و با به‌کارگیری الگوریتم ژنتیک و درختان تصمیم کوچک»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 3، صفحه 931-938، پاییز 1396.