[1] F. F. Kunzinger and K. Sohn, “Non-magnetic dc to dc converter circuits,” In INTELEC-1978, pp. 213-218, 1978.
[2] M. D. Seeman, V. W. Ng, H. P. Le, M. John, E. Alon, and S. R. Sanders, “A comparative analysis of switched-capacitor and inductor-based dc-dc conversion technologies,” In COMPEL, IEEE 12th Workshop on. pp. 1-7, June, 2010.
[3] L. Gu, K. Jin, X. Ruan, M. Xu, and F. C. Lee, “A family of switching capacitor regulators,” Power Electronics, IEEE Transactions on, 29(2), pp. 740-749, 2014.
[4] R. H. Dennard, B. L. Ji, and R. K. Montoye, No. 8, 395, 438, Washington, DC: U.S. Patent and Trademark Office, 2013.
[5] M. Shoyama, T. Naka, and T. Ninomiya, “Resonant SCC with high efficiency,” In PESC 04. IEEE 35th Annual, Vol. 5, pp. 3780-3786, June, 2004.
[6] M. Shoyama, F. Deriha, and T. Ninomiya, “Evaluation of conducted noise of resonant switched capacitor converter,” In INTELEC'06. 28th, IEEE, pp. 1-5, 2006.
[7] M. S. Makowski, and D. Maksimovic, “Performance limits of switched-capacitor DC-DC converters,” In PESC'95, 26th Annual IEEE, Vol. 2, pp. 1215-1221, June, 1995.
[8] M. D. Seeman, and S. R. Sanders, “Analysis and optimization of switched-capacitor DC–DC converters,” Power Electronics, IEEE Transactions on, 23(2), pp. 841-851, 2008.
[9] M. Xu, J. Sun, and F. C. Lee, “Voltage divider and its application in the two-stage power architecture,” In APEC'06. 21th Annual IEEE, pp. 7-12, March, 2006.
[10] S. Xiong, S. C. Wong, S. C. Tan, and C. K. Tse, “A family of exponential step-down switched-capacitor converters and their applications in two-stage converters,” Power Electronics, IEEE Trans. on, 29(4), pp. 1870-1880, 2014.
[11] D. F. Cortez, G. Waltrich, J. Fraigneaud, H. Miranda, and I. Barbi, “Dc–dc converter for dual-voltage automotive systems based on bidirectional hybrid switched-capacitor architectures,” Industrial Electronics, IEEE Transactions on, Vol. 62, No. 5, pp. 3296 – 3304, 2015.
[12] R. L. Andersen, T. B. Lazzarin, and I. Barbi, “A 1-kW step-up/step-down switched-capacitor ac–ac converter,” Power Electronics, IEEE Trans. on, 28(7), pp. 3329-3340, 2013.
[13] W. Qian, D. Cao, J. G. Cintrón-Rivera, M. Gebben, D. Wey, and F. Z. Peng, “A switched-capacitor dc–dc converter with high voltage gain and reduced component rating and count,” Industry Applications, IEEE Transactions on, 48(4), pp. 1397-1406, 2012.
[14] L. Muller and J. W. Kimball, “A dynamic model of switched-capacitor power converters,” Power Electronics, IEEE Transactions on, 29(4), pp. 1862-1869, 2014.
[15] S. Ben-Yaakov, “Behavioral average modeling and equivalent circuit simulation of switched capacitors converters,” Power Electronics, IEEE Transactions on, 27(2), pp. 632-636, 2012.
[16] M. K. Alam and F. H. Khan, “Efficiency characterization and impedance modeling of a multilevel SCC using pulse dropping switching scheme,” Power Electronics, IEEE Transactions on, 29(6), pp. 3145-3158, 2014.
[17] M. Evzelman and S. Ben-Yaakov, “Average-current-based conduction losses model of SC converters,” Power Electronics, IEEE Trans. on, 28(7), pp. 3341-3352, 2013.
[18] Y. P. B. Yeung, K. W. Cheng, S. L. Ho, K. K. Law, and D. Sutanto, “Unified analysis of switched-capacitor resonant converters,” Industrial Electronics, IEEE Transactions on, 51(4), pp. 864-873, 2004.
[19] T. Mishima, Y. Takeuchi, and M. Nakaoka, “Analysis, design, and performance evaluations of an edge-resonant switched capacitor cell-assisted soft-switching PWM boost dc–dc converter and its interleaved topology,” Power Electronics, IEEE Trans. on, 28(7), pp. 3363-3378, 2013.
[20] D. Cao and F. Z. Peng, “A family of zero current switching switched-capacitor dc-dc converters,” In APEC, 2010 25th Annual IEEE, pp. 1365-1372, February, 2010.
[21] J. Chen and A. Ioinovici, “SC quasi-resonant converter operating at constant switching frequency,” In INTELEC’95. 17th IEEE, pp. 315-321, 1995.
[22] E. Hamo, A. Cervera, and M. M. Peretz, “Multiple conversion ratio resonant switched-capacitor converter with active zero current detection,” Power Electronics, IEEE Transactions on, 30(4), pp. 2073-2083, 2015.
[23] A. Cervera, M. Evzelman, M. M. Peretz, and S. Ben-Yaakov, “A high-efficiency resonant switched capacitor converter with continuous conversion ratio,” Power Electronics, IEEE Trans. on, 30(3), pp. 1373-1382, 2015.
[24] L. He, “A novel quasi-resonant bridge modular switched-capacitor converter with enhanced efficiency and reduced output voltage ripple,” Power Electronics, IEEE Transactions on, 29(4), pp. 1881-1893, 2014.
[25] Y. Ye, K. W. E. Cheng, J. Liu, and C. Xu, “A family of dual-phase-combined zero-current switching switched-capacitor converters,” Power Electronics, IEEE Transactions on, 29(8), pp. 4209-4218, 2014.
[26] K. Sano and H. Fujita, “Performance of a high-efficiency SC-based resonant converter with phase-shift control,” Power Electronics, IEEE Transactions on, 26(2), pp. 344-354, 2011.
[27] A. Cervera and M. Mordechai Peretz, “Resonant switched-capacitor voltage regulator with ideal transient response,” Power Elec., IEEE Trans. on, 30(9), pp. 4943-4951, 2015.
[28] S. Goodarzi, R. Beiranvand, S. M. Mousavi, and M. Mohamadian, “A new algorithm for increasing balancing speed of switched-capacitor lithium-ion battery cell equalizers,” Power Electronics, Drives Systems and Tech. Conference (PEDSTC), IEEE, pp. 292-297, 2015.
[29] Y. Ye and K. W. E. Cheng, “A family of single-stage switched-capacitor–inductor PWM converters,” Power Electronics, IEEE Trans. on, 28(11), pp. 5196-5205, 2013.
[30] Y. Yuanmao and K. W. Cheng, “Level-shifting multiple-input SC voltage copier,” Power Electronics, IEEE Transactions on, 27(2), pp. 828 – 837, 2012.
[31] مهدی سلیمی و مریم پرنادم، «مبدل dc-dc افزاینده جدید مبتنی بر کلیدزنی سلفی/خازنی با بهره ولتاژ بسیار بالا،» مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 1، صفحات 107-121 ، 1396.
[32] M. Chen, K. K. Afridi, S. Chakraborty, and D. J. Perreault, “Multitrack power conversion architecture,” Power Electronics, IEEE Trans. on, 32(1), pp. 325 – 340, 2017.
[33] P. K. Peter and V. Agarwal, “On the input resistance of a reconfigurable switched capacitor DC–DC converter-based maximum power point tracker of a photovoltaic source,” Power Electronics, IEEE Transactions on, 27(12), pp. 4880-4893, 2012.
[34] A. Parastar and J. K. Seok, “High-gain resonant switched-capacitor cell-based DC/DC converter for offshore wind energy systems,” Power Electronics, IEEE Transactions on, 30(2), pp. 644-656, 2015.
[35] R. Beiranvand, “Analysis of a switched-capacitor converter above its resonant frequency to overcome voltage regulation issue of resonant SCCs,” Industrial Electronics, IEEE Transactions on, 63 (9), pp. 5315 – 5325, Sept. 2016.
[36] R. Beiranvand, “Regulating the output voltage of the resonant switched-capacitor converters below their resonant frequencies,” Industrial Electronics, IEEE Trans. on, Vol. 64, No. 7, pp. 5236 – 5249, July 2017.
[37] S. Li, Y. Zheng, B. Wu, and K. M. Smedley, “A family of resonant two-switch boosting switched-capacitor converter with ZVS operation and a wide line regulation range” Power Electronics, IEEE Transactions on, Vol. 33, no. 1, pp. 448 – 459, Jan. 2018.
[38] J. C. Dias and T. B. Lazzarin, “A family of voltage-multiplier unidirectional single-phase hybrid boost PFC rectifiers,” Industrial Electronics, IEEE Transactions on, Vol. 65, No.1, pp. 232 – 241, Jane, 2018.
[39] J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A dc-dc multilevel boost converter,” IET Power Electronics, Vol. 3, No. 1, pp. 129–137, 2010.
[40] J. C. Rosas-Caro, J. M. Ramirez, P. M. García-Vite, “Novel dc-dc multilevel boost converter,” IEEE, pp. 2146-2151, 2008.