بهبود پایداری دینامیکی ریزشبکه‌های DC با استفاده از سیستم کنترل غیرمتمرکز منابع ترکیبی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر- دانشگاه صنعتی جندی شاپور دزفول

2 دانشکده مهندسی برق و کامپیوتر- پردیس دانشکده های فنی- دانشگاه تهران

چکیده

در این مقاله، یک راه‌برد کنترلی غیرمتمرکز که مبتنی بر جداسازی کنترلی₋دینامیکی واحدهای تولید انرژی می‌باشد، به‌منظور بهره‌برداری پایدار و بهبود رفتار دینامیکی ریزشبکه dc، ارائه می‌گردد. با اعمال راه‌برد کنترلی پیشنهادی، واحدهای سلول سوختی (FC) و ابرخازن (SC) که در قالب یک منبع تولید پراکنده ترکیبی قرار دارند، به‌طور هم‌زمان کنترل می‌شوند؛ درحالی‌که، این واحدها کنترل‌کننده‌های مستقل و در پی آن عمل‌کرد دینامیکی مستقلی دارند. هم‌چنین، در این راه‌برد کنترلی، جهت حفظ اصول عمل‌کرد واحد SC یک بلوک تنظیم‌کننده حالت شارژ (SOC) نیز به‌کار گرفته می‌شود. درنتیجه، جداسازی دینامیکی واحدهای انرژی رفتار دینامیکی کل ریزشبکه dc را تحت تأثیر قرار داده و فاکتور میرایی سیستم را بهبود می‌بخشد. این مطلب با استفاده از روش تحلیل مکان‌هندسی مقادیر ویژه سیستم مورد ارزیابی قرار می‌گیرد. هم‌چنین مطالعات شبیه‌سازی در محیط نرم‌افزار PSCAD/IEMTDC عمل‌کرد مناسب طرح پیشنهادی را تأیید می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

The Improvement of Dynamic Stability of DC Microgrids Using Decentralized Control System of Hybrid DG

نویسندگان [English]

  • A. Goodarzi 1
  • M. Saradarzadeh 1
  • M. Hamzeh 2
1 Faculty of Electrical and Computer Engineering, Jundi Shapur University of Technology, Dezful, Iran
2 School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

In this paper, a decentralized control strategy based on the separation of the energy generation control unit is presented, which leads to stable operation and improve the DC micro-grid (MG) dynamic behavior. By applying the proposed control strategy, the fuel cell (FC) and supercapacitor (SC) units, which form a hybrid distributed generation (DG) source, are simultaneously controlled with independent controllers suggesting independent dynamic control performance. Moreover, in this control strategy, the SC unit, is supplied with a state-of-charge (SOC) regulator block to keep its proper performance. Accordingly, the dynamic separation of energy units affects the dynamic behavior of the overall DCMG and improves the system damping factor. By using the location analysis method of system eigenvalues, the proposed control strategy performance is evaluated. Also, the simulation studies in the PSCAD/IEMTDC software environment confirm the feasibility and proper performance of the proposed scheme.

کلیدواژه‌ها [English]

  • DC microgrid
  • dynamic separation
  • low frequency oscillations
  • droop control
  • supercapacitor (SC) state of charge (SOC)
[1]      مجید نیریپور، سعید حسنوند، حسین فلاح‌زاده ابرقوئی، « برنامه‌ریزی توسعه ظرفیت با در نظر گرفتن قابلیت اطمینان سیستم به‌منظور تبدیل شبکه توزیع موجود به ریزشبکه»، مجله مهندسی برق دانشگاه تبریز، جلد ۴7 ، شماره 2، 774-761، تابستان ۱۳96.
[2]      W. Du, J. Zhang, Y. Zhang, and Zhaoming Qian, “Stability criterion for cascaded system with constant power load, ” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1843 – 1851, April 2013.
[3]      J. Zeng, Z. Zhang, and W. Qiao, “An interconnection and damping assignment passivity-based controller for a DC–DC boost converter with a constant power load, ” IEEE Transactions on Industry Applications, vol. 50, no. 4, july/august 2014.
[4]      امین رنجبران، محمود عبادیان، «ارائه روش کنترلی به‌منظور تنظیم دقیق ولتاژ بار و تقسیم دقیق توان‌های اکتیو و راکتیو ریزشبکه»، مجله مهندسی برق دانشگاه تبریز، جلد 47 ، شماره 3، 1058-1047، پاییز 1396.
[5]      J.Guerrero, P.C. Loh, T.-L. Lee, et al.: “Advanced control architectures for intelligent microgrids; part ii: Power quality, energy storage, and ac/dc microgrids, ” IEEE Trans. Ind Electron., 60, (4), pp. 1263–1270, 2013.
[6]      S. Sanchez and M. Molinas, “Degree of influence of system states transition on the stability of a DC microgrid”, IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2535–2542, Sep. 2014.
[7]      C. Jin, P. Wang, J. Xiao, Y. Tang, and F. H. Choo, “Implementation of hierarchical control in DC microgrids”, IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4032–4042, Aug. 2014.
[8]      M. Hamzeh, A. Ghazanfari, Y. A.-R. I. Mohamed, and Y. Karimi, “Modeling and design of an oscillatory current sharing control strategy in DC microgrids,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6647–6657, May 2015.
[9]      سید عباس صارمی حصاری، محسن حمزه، احمد سالم‌نیا، «بهبود عملکرد دینامیکی و استاتیکی سیستم تقسیم توان در ریزشبکه‌ها در حالت جزیره‌ای»، مجله مهندسی برق دانشگاه تبریز، جلد ۴۶ ، شماره ۱، 243-233، بهار ۱۳95.
[10]      L. Guo, S. Zhang, X. Li, YW. Li, C. Wang, Y. Feng, “Stability Analysis and Damping Enhancement Based on frequency dependent virtual resistor for DC Microgrids, ” IEEE Transactions on Power Electronics, vol. 5, no. 1, pp. 338-350, March 2017.
[11]      T. Morstyn, B. Hredzak, G. D. Demetriades, and V. G. Agelidis. "Unified distributed control for dc microgrid operating modes," IEEE Transactions on Power Systems, vol.31, no. 1, 802-812, 2016.  
[12]      Q. Shafiee, T. Dragicevic, J. Vasquez, and J. Guerrero, “Hierarchical control for multiple DC-microgrids clusters,” IEEE Transactions on Energy Conversion, vol. 29, pp. 922–933, 2014.
[13]      X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, “An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1800-1812, Apr. 2014.
[14]      L. Meng, T. Dragicevic, J. M. Guerrero, and J. C. Vasquez, “Dynamic consensus algorithm based distributed global efficiency optimization of a droop controlled DC microgrid,” in Proc. IEEE Int. Energy Conf., pp. 1276–1283, 2014.
[15]      X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and L. Huang, “Doublequadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous DC microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 147–157, Jan. 2015.
[16]      A. Tahim, D. Pagan, E. Lenz, V. Stramosk, “Modeling and stability analysis of islanded DC microgrids under droop control,” IEEE Transactions on Power Electronics, vol. 30, NO. 8, pp. 4597-4607, August 2015.
[17]      A. Hosseinipour, and H. Hojabri, "Virtual inertia control of PV systems for dynamic performance and damping enhancement of DC microgrids with constant power loads." IET Renewable Power Generation, Vol. 12, no. 4, 430-438, 2017.
[18]      Q. Yang, H. Zhao, and H. Zeng, "Autonomous voltage regulation and current sharing in islanded multi-inverter DC microgrid." IEEE Transactions on Smart Grid 9, no. 6, 6429-6437, Nov. 2018.
[19]       F. Guo, Q. Xu, Ch. Wen, L. Wang, and P. Wang, "Distributed Secondary Control for Power Allocation and Voltage Restoration in Islanded DC Microgrids." IEEE Transactions on Sustainable Energy, vol. 9, no. 4, pp. 1857–1869, Oct. 2018.
[20]      E. Mojica-Nava, J. M. Rey, J. Torres-Martinez, and M. Castilla, "Decentralized Switched Current Control for DC Microgrids." IEEE Transactions on Industrial Electronics, Vol. 66, no. 2, 1182-1191, Feb. 2019.
[21]      M. Hamzeh, M. Ghafouri, H. Karimi, K. Sheshyekani, and J. M. Guerrero, “Power oscillations damping in DC microgrids,” IEEE Trans. Energy Convers., vol. 31, no. 3, pp. 970–980, Sep. 2016.
[22]      A. Khorsandi, M. Ashourloo, H. Mokhtari, and R. Iravani, “Automatic droop control for a low voltage DC microgrid,” IET Generat., Transmiss. Distrib., vol. 10, no. 1, pp. 41–47, Jan. 2016.