Linearized Optimal Power Flow Model for Co-planning of Smart Multi-energy Distribution Networks

Document Type : Original Article

Authors

1 Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran

2 Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

Co-planning of multi-energy networks is of utmost importance for improving the overall productivity of energy infrastructure. In recent years, the use of natural gas distributed generation (GDG) has increased in the electricity industry. In this paper, an AC optimal power flow model for electricity and gas distribution networks is developed in order to meet the multiple objectives of planning. Unlike heuristic methods and separate power flow, the proposed strategy deals with a simultaneous OPF and non-iterative. The problem model is a nonlinear programming model and nonconvex. Due to the formulation complexity and non-linear and               non-convex nature of the problem, it is time-consuming, difficult, and sometimes impossible to achieve an optimum response. Therefore, the power flow is reformulated as a linear programming model.  This model can be implemented using existing mathematical optimization methods and a desirable convergence to solve the planning problem. The proposed model is implemented on a test system and the numerical results show the efficiency of the proposed model.

Keywords


[1]  X. Zhang, L. Che, M. Shahidehpour, A. S. Alabdulwahab and A. Abusorrah, “Reliability-Based Optimal Planning of Electricity and Natural Gas Interconnections for Multiple Energy Hubs,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1658–1667, Jul. 2017.
[2]    A. Movahednasab, M. Rashidinejad and A. Abdollahi, “Dynamic Analysis of Natural Gas Role on Capacity Expansion in Power Market,” Int. J. Power Energy Syst., vol. 37, no. 1, 2017.
[3]    Annual Energy Outlook. [Online]. Available:http://www.eia.gov. 2014.
[4]     S. Bahrami and A. Sheikhi, “From Demand Response in Smart Grid Toward Integrated Demand Response in Smart Energy Hub,” IEEE Trans. Smart Grid, pp. 1–1, 2015.
[5]    Kozulj R, “Documento de proyecto La participación de las fuentes renovables en la generación de energía eléctrica: inversiones y estrategias empresariales en América Latina y el Caribe,” 2010. [Online]. Available:http://www.eclac.cl/publicaciones/xml/5/41115/lcw331e.pdf.
[6]     M. Chaudry, N. Jenkins, M. Qadrdan and J. Wu, “Combined gas and electricity network expansion planning,” Appl. Energy, vol. 113, pp. 1171–1187, 2014.
[7]     M. Mohammadi, Y. Noorollahi, B. Mohammadi-ivatloo, M. Hosseinzadeh, H. Yousefi and S. T. Khorasani, “Optimal management of energy hubs and smart energy hubs – A review,” Renew. Sustain. Energy Rev., vol. 89, pp. 33–50, 2018.
[8]     A. Sheikhi, S. Bahrami and A. M. Ranjbar, “An autonomous demand response program for electricity and natural gas networks in smart energy hubs,” Energy, vol. 89, pp. 490–499, 2015.
[9]     J. Qiu, Z. Y. Dong, J. H. Zhao, Y. Xu, C. Li and K. P. Wong, “Multi-Stage Flexible Expansion Co-Planning Under Uncertainties in a Combined Electricity and Gas Market,” IEEE Trans. Power Syst., vol. 30, no. 4, pp. 2119–2129, Jul. 2015.
[10]   C. Unsihuay-Vila, J. W. Marangon-Lima, A. C. Z. De Souza, I. J. Perez-Arriaga and P. P. Balestrassi, “A model to long-term, multiarea, multistage, and integrated expansion planning of natural gas systems,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 1154–1168, 2010.
[11]   F. Barati, H. Seifi, M. S. Sepasian, A. Nateghi, M. Shafie-Khah and J. P. S. Catalao, “Multi-Period Integrated Framework of Generation, Transmission, and Natural Gas Grid Expansion Planning for Large-Scale Systems,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2527–2537, 2015.
[12]   J. Qiu, Z. Y. Dong, J. H. Zhao, K. Meng, Y. Zheng and D. J. Hill, “Low Carbon Oriented Expansion Planning of Integrated Gas and Power Systems,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 1035–1046, Mar. 2015.
[13]   A. Rieder, A. Christidis and G. Tsatsaronis, “Multi criteria dynamic design optimization of a small scale distributed energy system,” Energy, vol. 74, pp. 230–239, Sep. 2014.
[14]   A. Sheikhi, M. Rayati, S. Bahrami and A. Mohammad Ranjbar, “Integrated Demand Side Management Game in Smart Energy Hubs,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 675–683, Mar. 2015.
[15]   M. S. Nazar and M. R. Haghifam, “Multiobjective electric distribution system expansion planning using hybrid energy hub concept,” Electr. Power Syst. Res., vol. 79, no. 6, pp. 899–911, Jun. 2009.
[16]   A. Sheikhi, M. Rayati and A. M. Ranjbar, “Energy Hub optimal sizing in the smart grid; machine learning approach,” in 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, 2015.
[17]   X. Zhang, G. G. Karady and S. T. Ariaratnam, “Optimal Allocation of CHP-Based Distributed Generation on Urban Energy Distribution Networks,” IEEE Trans. Sustain. Energy, vol. 5, no. 1, pp. 246–253, Jan. 2014.
[18]   M. Ahmadigorji and N. Amjady, “Optimal dynamic expansion planning of distribution systems considering non-renewable distributed generation using a new heuristic double-stage optimization solution approach,” Appl. Energy, vol. 156, pp. 655–665, 2015.
[19]   A. Soroudi, “Possibilistic-Scenario Model for DG Impact Assessment on Distribution Networks in an Uncertain Environment,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1283–1293, Aug. 2012.
[20]   M. Esmaili, E. C. Firozjaee and H. A. Shayanfar, “Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints,” Appl. Energy, vol. 113, pp. 1252–1260, 2014.
[21]   M. Shahidehpour, Yong Fu and T. Wiedman, “Impact of Natural Gas Infrastructure on Electric Power Systems,” Proc. IEEE, vol. 93, no. 5, pp. 1042–1056, May 2005.
[22]   S. D. Manshadi and M. E. Khodayar, “A Tight Convex Relaxation for the Natural Gas Operation Problem,” IEEE Trans. Smart Grid, pp. 1–1, 2018.
[23]   C. A. Saldarriaga, R. A. Hincapie and H. Salazar, “A Holistic Approach for Planning Natural Gas and Electricity Distribution Networks,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4052–4063, Nov. 2013.
[24]  Z. Li and Y. Xu, “Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes,” Appl. Energy, vol. 210, no. August, pp. 974–986, 2018.
[25]   C. Liu, M. Shahidehpour and J. Wang, “Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow,” Chaos An Interdiscip. J. Nonlinear Sci., vol. 21, no. 2, pp. 1-12, Jun. 2011.
[26]   X. Zhang, G. G. Karady and S. T. Ariaratnam, “Optimal Allocation of CHP-Based Distributed Generation on Urban Energy Distribution Networks,” IEEE Trans. Sustain. Energy, vol. 5, no. 1, pp. 246–253, Jan. 2014.
[27]    مجید حروفیانی، علی زنگنه و رضا قندهاری، «مدل چندهدفه قیمت‌گذاری تزریق توان راکتیو منابع تولید پراکنده در شبکه توزیع»، مجله مهندسی برق دانشگاه تبریز، شماره 3، جلد 46، صفحات 159-149، 1395.
[28]   V. Vahidinasab and S. Jadid, “Multiobjective environmental/techno-economic approach for strategic bidding in energy markets,” Appl. Energy, vol. 86, no. 4, pp. 496–504, 2009.
[29] نرگس پرهیزی، موسی مرزبند،سید مازیار میرحسینی مقدم،بهنام محمدی یواتلوو فاطمه آذری نژادیان"پیاده سازی عملی یک سیستم مدیریت انرژی برای یک ریز شبکه متصل به شبکه سراسری با استفاده از الگوریتم رقابت استعماری چندبعدی" مجله مهندسی برق دانشگاه تبریز، شماره یک، جلد 46، صفحات 25-40، سال 1395.
[30] محمدرضا کریمی، جمشید آقایی و امین رحیمی رضایی،" به‌کارگیری بهینه‌سازی استوار جهت مقابله با عدم قطعیت نیروگاه‌های بادی در برنامه‌ریزی توسعه تولید" مجله مهندسی برق دانشگاه تبریز،شماره 2، جلد 47، صفحات 665-676، 1396.
 
 [31]  G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization. Wiley, 1999.
 
 [32]  A. Kavousi-Fard, A. Zare and A. Khodaei, “Effective Dynamic Scheduling of Reconfigurable Microgrids,” IEEE Trans. Power Syst., vol. 8950, no. c, pp. 1–1, 2018.
[33]   A. Herrán-González, J. M. De La Cruz, B. De Andrés-Toro and J. L. Risco-Martín, “Modeling and simulation of a gas distribution pipeline network,” Appl. Math. Model., vol. 33, no. 3, pp. 1584–1600, Mar. 2009.
[34]   J.M. Campbell, The Equipment Modules. Gas Conditioning and Processing. Norman, Okla., 7 edition,1992.
[35]   Australian Energy Market Operator (AEMO). [Online]. Available: https://www.aemo.com.au/.
[36]   S. P. Bradley, A. C. Hax and T. L. Magnanti, Applied mathematical programming. Addison-Wesley Pub. Co, 1977.
[37]   M. V. Pereira, S. Granville, M. H. C. Fampa, R. Dix and L. A. Barroso, “Strategic bidding under uncertainty: A binary expansion approach,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 180–188, 2005.
 [38]  R. P. O’Neill, A. Castillo and M. B. Cain, “The IV formulation and linear approximations of the AC optimal power flow problem (OPF Paper 2),” FERC Staff Tech. Pap., no. December, pp. 1–18, 2012.
 [39]  M. Geidl, G. Andersson, M. Geidl and G.Andersson, “Optimal Power Flow of Multiple Energy Carriers,” IEEE Trans. Power Syst., vol. 22, no. 1, pp. 145–155, 2007.
 [40]  C. Liu, M. Shahidehpour, Y. Fu and Z. Li, “Security-constrained unit commitment with natural gas transmission constraints,” IEEE Trans.Power Syst., vol. 24, no. 3, pp. 1523–1535, Aug. 2009.