Design and Simulation of the Organic Bio-FET for Detection of Escherichia Coli Using Pentacene Organic Semiconductor

Document Type : Original Article

Authors

Faculty of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran

Abstract

A biosensor for the detection of E. coli O157: H7 bacterium has been designed by using the mean of an organic field effect transistor, and the behavior of the sensor was studied and analyzed under a simulated environment. The design of biosensor includes two essential parts: scheming the structure and choosing the material. In the structure part, an OCMFET configuration, previously used for DNA hybridization, for the first time has been employed for the detection of E. coli with some modifications. In the modified structure, a microfluidic pathway has been added to let the analyte in and out, which makes it possible to detect low volumes of the bacterium in the stream of analyte efficiently and quickly. For the material part, Pentacene, as an organic semiconductor, has been used due to its valuable parameters such as environmental compatibility, cheapness, and easy manufacturing processes. The simulation results are shown 2 minutes after applying the analyte, containing 100 CFU/mL E. coli, 35 bacteria adhere to the active area of the device, leading to a 72 mV shift in the I-V curve. This shift reaches about 174 mV for 86 contained bacteria within 5 minutes which indicates high sensitivity of the sensor. The fast response time, notable sensitivity, biocompatibility, fabricability with current technology, and affordability are among the other benefits of this structure.

Keywords


[1]      A. Pandey, Y. Gurbuz, “Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E.coli O157:H7,” Bios Journal, vol. 91, pp. 225-231, 2017
[2]      MB. Maas1, WJ. Perold, LMT. Dicks, “Biosensors for the detection of Escherichia coli, ” water SA Journal, vol. 43, pp. 707-721, 2017
[3]      H. M. So, D. W. Park, E. K. Jeon” Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect Transistors,” Wiley, Small, vol. 4, no. 2, pp. 197-201, 2008
[4]      M. Kaisti  “Detection  principles  of  biological  and  chemical FET sensors,” Elsevier, Biosensors and Bioelectronics, vol. 98, pp. 437-448, 2017
[5]      مهسا مهراد و میثم زارعی، « ارائه ساختار نوین ترانزیستور اثر میدان سیلیسیم روی عایق دو گیتی با پنجره اکسید درین گسترده شده به‌منظور کاربرد در تکنولوژی نانو،» مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحات 733-727، 1396.
[6]      حامد نجفعلی زاده و علی اصغر اروجی، « طراحی ساختاری از ترانزیستور ماسفت دوگیتی با به‌کارگیری دو ماده، اکسید هافنیم (HfO2) و سیلیسیم-ژرمانیوم (SiGe) در کانالی از جنس سیلیسیم (DM-DG)،» مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحات 304-299، 1396.
[7]      G. Wu, M. Meyyappan, and K.W.C.L. Wu, "Simulation of Graphene Field-Effect Transistor Biosensors for Bacterial Detection," Sensors, vol. 18, no. 6, pp. 1-14, 2018.
[8]      B. Thakur, G. Zhou, J. Chang, H. Pu, B. Jin, X. Sui, X. Yuan, C.H. Yang, M. Magruder, and J. Chen, "Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device," Biosensors and Bioelectronics, vol. 110, pp. 16-22, 2018.
[9]      C. Singh, M.A. Ali, V. Reddy,D. Singh,C.G. Kim,G. Sumana, and B.D. Malhotra, "Biofunctionalized graphene oxide wrapped carbon nanotubes enabled microfluidic immunochip for bacterial cells detection," Sensors and Actuators B: Chemical, vol. 255, no. 3, pp. 2495-2503, 2018.
[10]      Y. Jiang, X. Liu, T. C. Dang, X. Huang, H. Feng, Q. Zhang, and H. Yu, "A High-Sensitivity Potentiometric 65-nm CMOS ISFET Sensor for Rapid E. coli Screening," IEEE transactions on biomedical circuits and systems, vol. 12, no. 2, pp. 402-415, 2018.
[11]      P.  Lin,  F.  Yan, “Organic  thin-film  transistors  for  chemical  and  biological  sensing,” Wiley, Adv Mater, vol. 24, no. 1, pp. 34-51, 2012
[12]      O. Marinov, M. J. Deen, et al, “Organic thin-film transistors: part I—compact DC modeling” IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 2952 – 2961, 2009
[13]      S. Lai, M. Demelas, et al, “Ultralow voltage, OTFT-based sensor for label-free DNA detection,” Wiley, Adv Mater, vol. 25, no. 1, pp. 103-107, 2013
[14]      M. Barbaro, A.  Caboni, et al “Label-free,  direct  DNA  detection  by  means  of  a  standard  CMOS  electronic  chip,” Elsevier, snb,  vol. 171-172, pp.148-154, 2011
[15]      M. Demelas, S. Lai, et al “An  organic  charge-modulated  field  effect  transistor  for  DNA  detection,” Elsevier, Sensors and  Actuators B, vol. 171-172, pp. 198-203, 2012
[16]      S. Lai, M. Barbaro and A. Bonfiglio, “Tailoring   the   sensing   performances   of   an   OFET-based   biosensor,” Elsevier, snb, vol. 233, pp. 314-319, 2016
[17]      S. Lai, M. Barbaro, and A. Bonfiglio, “Organic fet-based DNA hybridization sensor with sub-picomolar sensitivity,” IEEE, EMBC Annual International Conference, pp. 7958-7961, 2015
[18]      Z. Rang, A. Haraldsson, D. M. Kim, P. P. Ruden, and M. I. Nathan, “Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene,” Applied Physics Letters, vol 79, no 17, pp.  2731-2722, 2001
[19]      U. Haas, H. Gold, A. Haase, G. Jakopic, and B. Stadlobera, “Submicron pentacene-based organic thin film transistors on flexible substrates,” Applied Physics Letters, vol 91,  no 4, 2007
[20]      D. J. Yun, S. H. Lim, T. W. Lee and S. W. Rhee,” Fabrication of the flexible pentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate,” Organic Electronics, vol 10, no 5, pp 970-977, 2009
[21]      S. R. Saudari, Y. J. Lin, Y. Lai and C. R. Kagan, ” Device configurations for ambipolar transport in flexible pentacene transistors,” Adv Mater, vol. 22, no.44, pp. 5063–5068, 2010
[22]      A. Facchetti, “Semiconductors for organic transistors,” materials today, vol. 10, no.3, pp. 28-37, 2007
[23]      S. R. Saudari and C. R. Kagan, “Electron and hole transport in ambipolar, thin film pentacene transistors,” Journal of Applied Physics, vol. 177, no. 3, 2015
[24]      J. Atencia, D. J. Beebe, “Controlled microfluidic interfaces,” NATURE, vol.437, pp. 648-655, 2005
[25]      D. A. Lytle, W. R. Eugene, et al, “Electrophoretic mobilities of Escherichia coli O157: H7 and wild-type Escherichia coli strains,” AEM, vol. 65, no.7, pp. 3222-3225, 1999
[26]      H. Liu, Nanocomposites For Musculoskeletal Tissue Regeneration, Woodhead Publishing, 2016
[27]      J. Li, L. I. McLandsborough, “The effects of the surface charge and hydrophobicity of Escherichia coli on its adhesion to beef muscle," International journal of food microbiology, vol. 53, no. 2-3, pp. 185-193, 1999
[28]      Ron Milo, Rob Phillips, Cell Biology By The Numbers, Garland Science, 2015.
[29]      P. Geng, X. Zhang, Y. Teng, Y. Fu, L. Xu, M. Xu, et al., "A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli," Biosensors and Bioelectronics, vol. 26, pp. 3325-3330, 2011.
[30]      P. Cheng, Z-Gen Huang, Y. Zhuang, and et,al, "A novel regeneration-free E. coli O157:H7 amperometric immunosensor based on functionalised four-layer magneticnanoparticles", Sensors and Actuators B 204 pp. 561–567, 2014.
[31]      R. Maalouf, C. Foumier-Wirth, J. Coste, H. Chebib, Y. Saikali, O. Vittori, A. Errachid, J.-P. Cloarec, C. Martelet, N. Jaffrezic-Renault, "Labelfree detection of bacteria by electrochemical impedance spectroscopy: Comparison to surface plasmon resonance", Anal. Chem. 79 (2007) 4879-4886.
[32]      M. Varshney, Y. Li, "Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples", Biosens. Bioelectron. 22 pp. 2408-2414, 2007.