Computation of the EMF in an Axial Flux PM less Machine using Analytical Method

Document Type : Original Article

Authors

Department of Electrical Engineering, malayer university, Malayer, Iran

Abstract

In this paper an analytical method for electromotive force (EMF) calculation in an axial flux PM less machine is presented. The analytical method uses the scalar magnetic potential to calculate the magnetic flux density at air gap and winding regions. Laplace equation is solved in several regions of machine and the scalar magnetic potential is calculated, then the magnetic flux density is computed using scalar magnetic potential. Finally the EMF in the stator windings is calculated. This analytical method requires less computational time than conventional finite element methods and is therefore suitable for designing and optimization purposes. The proposed analytical model validated by comparing its results to corresponding 3D finite element analysis as well as experimental results.

Keywords


[1] رضا عمادی‌فر، سجاد توحیدی، محمدرضا فیضی، نقی رستمی، مجتبی الدرمی، «بررسی تأثیر شکل مغناطیس‌های دائم بر گشتاور دندانه و نیروی محرکه القایی یک ژنراتور مغناطیس دائم شارمحوری به کمک روش المان محدود»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 3، صفحه  1159-1147، 1396.
[2] حسین آذرین‌فر، محمدرضا آقاابراهیمی،«طراحی، بهینه‌سازی و شبیه‌سازی یک نوع جدید از ژنراتورهای شار متقاطع روتور دیسکی مغناطیس دائم»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 4، صفحه  1306-1291، 1396.
[3]      F. G. Capponi, G. De Donato, and F. Caricchi, “Recent advances in axial-flux permanent-magnet machine technology, ” IEEE Transactions on Industry Applications, vol. 48, pp. 2190-2205, 2012.
[4]      M.  Aydin,  S.  Huang  and  T.A.  Lipo,  “Axial  Flux Permanent  Magnet Disc Machines: a Review” Proc. of International Symposium on Power Electronics, Electrical  Drives,  Automation  and  Motion, SPEEDAM 2004 . pp 61-71, Jun. 2004.
[5]      R. J. Wang, M. J. Kamper, K. Van der Westhuizen, and J. F. Gieras, “Optimal design of a coreless stator axial flux permanent-magnet generator,” IEEE Trans. Magn., vol. 41, no. 1, pp. 55–64, Jan. 2005.
[6]      S. Brisset, D. Vizireanu, and P. Brochet, “Design and optimization of a nine-phase axial-flux PM synchronous generator with concentrated winding for direct-drive wind turbine,” IEEE Trans. Ind. Appl., vol. 44, no. 3, pp. 707–715, 2008.
[7]      T. F. Chan and L. L. Lai, “An axial-flux permanent-magnet synchronous generator for a direct-coupledwind-turbine system,” IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 86–94, 2007.
[8]      M. Aydin, S. R. Huang and T. A. Lipo, “A new axial fiux surface mounted permanent magnet machine capable of field control,” IEEE IAS Annual Meeting, Pittsburgh, USA, pp.1250-1257, 2002.
[9]      V. Naeini, M. Ardabili, “New axial flux PM less synchronous machine with concentrated DC field on stator,” Electrical Power and Energy Systems, vol. 67, pp. 651-658. ,2014.
[10]      Y. S. Ayat and M. R. A. Pahlavani, “3D computation of no-load magnetic flux density in slotless axial-flux permanent-magnet synchronous machines using conformal mapping, ” IET Electric Power Applications, vol. 11, pp. 1391-1396, 2017.
[11]      T. Chan, L. Lai, and S. Xie, “Field computation for an axial flux permanent-magnet synchronous generator, ” IEEE Transactions on energy conversion, vol. 24, pp. 1-11, 2009.
[12]      O. De la Barriere, S. Hlioui, H. B. Ahmed, M. Gabsi, and M. LoBue, “3-D formal resolution of Maxwell equations for the computation of the no-load flux in an axial flux permanent-magnet synchronous machine, ” IEEE Transactions on Magnetics, vol. 48, pp. 128-136, 2012.
[13]      M. R. Pahlavani, Y. S. Ayat, and A. Vahedi, "Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations," IET Electric Power Applications, vol. 11, pp. 1124-1130, 2017.