[1] سمیرا رفیعی و پرهام مرادی، «بهبود عملکرد الگوریتم خوشهبندی فازی سی-مینز با وزندهی اتوماتیک و محلی ویژگیها»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 2، صفحه 86-75، تابستان 1395.
[2] علیرضا سردار و رمضان هاونگی، «بهبود عملکرد الگوریتم خوشهیابی خودکار تصاویر رنگی به کمک پیشپردازش با شبکه عصبی خودسامانده»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحه 1082-1073، پاییز 1396.
[3] سیامک عبداللهزاده، محمدعلی بالافر و لیلی محمدخانلی، «استفاده از خوشهبندی و مدل مارکوف جهت پیشبینی درخواست آتی کاربر در وب»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 3، صفحه 96-89، پاییز 1394.
[4] یوکابد صدری، علی آقاگلزاده و مهدی ازوجی، «ادغام تصاویر چندفوکوسه با استفاده از همدوسی فاز و خوشهبند K-means»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، صفحه 127-117، زمستان 1394.
[5] رضا خدایی، محمدعلی بالافر و سیدناصر رضوی، «اثربخشی بسط پرسوجو مبتنی بر خوشهبندی اسناد شبهبازخورد با الگوریتم K-NN»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، صفحه 151-143، بهار 1395.
[6] مجید محمدپور و حمید پروین، «الگوریتم ژنتیک آشوبگونه مبتنی بر حافظه و خوشهبندی برای حل مسائل بهینهسازی پویا»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، صفحه 318-299، پاییز 1395.
[7] X. Wu, T. Ma, J. Cao, Y. Tian, and A. Alabdulkarim, “A comparative study of clustering ensemble algorithms,” Computers & Electrical Engineering, vol. 68, pp. 603-615, 2018.
[8] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Computing Surveys (CSUR), vol. 31, pp. 264-323, 1999.
[9] F. Yang, T. Li, Q. Zhou, and H. Xiao, “Cluster ensemble selection with constraints,” Neurocomputing, vol. 235, pp. 59-70, 2017.
[10] L. Bai, J. Liang, and Y. Guo, “An ensemble clusterer of multiple fuzzy k-means clusterings to recognize arbitrarily shaped clusters,” IEEE Transactions on Fuzzy Systems, 2018.
[11] J. Bai, S. Song, T. Fan, and L. Jiao, “Medical image denoising based on sparse dictionary learning and cluster ensemble,” Soft Computing, pp. 1-7, 2017.
[12] V. Berikov, N. Karaev, and A. Tewari, “Semi-supervised classification with cluster ensemble,” in Engineering, Computer and Information Sciences (SIBIRCON), 2017 International Multi-Conference on, 2017, pp. 245-250.
[13] H. Alizadeh, Cluster Ensemble Selection Based on Mathematical and Social Optimization Methods (in Persian), PhD Thesis, Iran University of Science and Technology, 2014.
[14] H. Alizadeh, M. Yousefnezhad, and B. M. Bidgoli, “Wisdom of Crowds cluster ensemble,” Intelligent Data Analysis, vol. 19, pp. 485-503, 2015.
[15] A. Fred and A. Lourenço, “Cluster ensemble methods: from single clusterings to combined solutions,” in Supervised and Unsupervised Ensemble Methods and Their Applications, ed: Springer, 2008, pp. 3-30.
[16] A. L. Fred and A. K. Jain, “Data clustering using evidence accumulation,” in Pattern Recognition, 2002. Proceedings. 16th International Conference on, 2002, pp. 276-280.
[17] A. Strehl and J. Ghosh, “Cluster ensembles---a knowledge reuse framework for combining multiple partitions,” Journal of Machine Learning Research, vol. 3, pp. 583-617, 2002.
[18] M. Yousefnezhad, Cluster Ensemble Selection Based on the Wisdom of Crowds (in Persian), MSc Thesis, Mazandaran University of Science and Technology, 2013.
[19] M. Yousefnezhad, H. Alizadeh, and B. Minaei-Bidgoli, “New cluster ensemble selection method based on diversity and independent metrics (in Persian),” in 5th Conference on Information and Knowledge Technology (IKT’13), 2013, pp. 22-24.
[20] M. Yousefnezhad and D. Zhang, “Weighted spectral cluster ensemble,” in Data Mining (ICDM), 2015 IEEE International Conference on, 2015, pp. 549-558.
[21] H. Alizadeh, B. Minaei-Bidgoli, and H. Parvin, “Cluster ensemble selection based on a new cluster stability measure,” Intelligent Data Analysis, vol. 18, pp. 389-408, 2014.
[22] H. Alizadeh, H. Parvin, and S. Parvin, “A framework for cluster ensemble based on a max metric as cluster evaluator,” IAENG International Journal of Computer Science, vol. 39, pp. 10-19, 2012.
[23] X. Z. Fern and W. Lin, “Cluster ensemble selection,” Statistical Analysis and Data Mining, vol. 1, pp. 128-141, 2008.
[24] A. K. Jain, A. Topchy, M. H. Law, and J. M. Buhmann, “Landscape of clustering algorithms,” in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 2004, pp. 260-263.
[25] J. Surowiecki, “The wisdom of crowds: Why the many are smarter than the few and how collective wisdom shapes business,” Economies, Societies and Nations, vol. 296, 2004.
[26] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing,” in Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, 2012, pp. 173-184.
[27] L. Baker and D. Ellison, “The wisdom of crowds—ensembles and modules in environmental modelling,” Geoderma, vol. 147, pp. 1-7, 2008.
[28] B. Miller, P. Hemmer, M. Steyvers, and M. D. Lee, “The wisdom of crowds in rank ordering problems,” in 9th International Conference on Cognitive Modeling, 2009.
[29] M. Steyvers, B. Miller, P. Hemmer, and M. D. Lee, “The wisdom of crowds in the recollection of order information,” in Advances in Neural Information Processing Systems, 2009, pp. 1785-1793.
[30] P. Welinder, S. Branson, P. Perona, and S. J. Belongie, “The multidimensional wisdom of crowds,” in Advances in Neural Information Processing Systems, 2010, pp. 2424-2432.
[31] D. P. Williams, “Underwater mine classification with imperfect labels,” in Pattern Recognition (ICPR), 2010 20th International Conference on, 2010, pp. 4157-4161.
[32] S. K. Yi, M. Steyvers, M. Lee, and M. Dry, “Wisdom of the crowds in minimum spanning tree problems,” in Proceedings of the Annual Meeting of the Cognitive Science Society, 2010.
[33] K. Faceli, A. C. De Carvalho, and M. C. De Souto, “Multi-objective clustering ensemble,” International Journal of HybridIntelligent Systems, vol. 4, pp. 145-156, 2007.
[34] H. G. Ayad and M. S. Kamel, “Cumulative voting consensus method for partitions with variable number of clusters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 160-173, 2008.
[35] A. Topchy, A. K. Jain, and W. Punch, “Combining multiple weak clusterings,” in Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, 2003, pp. 331-338.
[36] H. G. Ayad and M. S. Kamel, “Cluster-based cumulative ensembles,” in International Workshop on Multiple Classifier Systems, 2005, pp. 236-245.
[37] A. L. Fred and A. K. Jain, “Combining multiple clusterings using evidence accumulation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 835-850, 2005.
[38] L. I. Kuncheva and S. T. Hadjitodorov, “Using diversity in cluster ensembles,” in Systems, Man and Cybernetics, 2004 IEEE International Conference on, 2004, pp. 1214-1219.
[39] A. L. Fred and A. K. Jain, “Learning pairwise similarity for data clustering,” in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, 2006, pp. 925-928.
[40] J. Azimi, J. Maani, and N. Mozayyeni, “Improved Clustering Ensembles (in Persian),” presented at the 11th International CSI Computer Conference (CSICC06), 2006.
[41] J. Azimi and M. Analoui, “Distinguishing Marginal Samples to Improve Clustering Ensembles (in Persian),” presented at the 11th International CSI Computer Conference (CSICC06), 2006.
[42] J. Azimi, M. Mohammadi, and M. Analoui, “Clustering ensembles using genetic algorithm,” in Computer Architecture for Machine Perception and Sensing, 2006. CAMP 2006. International Workshop on, 2006, pp. 119-123.
[43] A. Ben-Hur, A. Elisseeff, and I. Guyon, “A stability based method for discovering structure in clustered data,” in Biocomputing 2002, ed: World Scientific, 2001, pp. 6-17.
[44] T. Lange, V. Roth, M. L. Braun, and J. M. Buhmann, “Stability-based validation of clustering solutions,” Neural Computation,vol. 16, pp. 1299-1323, 2004.
[45] P.-Y. Mok, H. Huang, Y. Kwok, and J. Au, “A robust adaptive clustering analysis method for automatic identification of clusters,” Pattern Recognition, vol. 45, pp. 3017-3033, 2012.
[46] K. Arai and A. R. Barakbah, Hierarchical K-means: an algorithm for centroids initialization for K-means, Reports of the Faculty of Science and Engineering, vol. 36, pp. 25-31, 2007.
[47] D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient estimation of the number of clusters,” in Icml, 2000, pp. 727-734.
[48] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. {UCI} Repository of machine learning databases, 1998.