An Inductorless Differential LNA with Active and Passive Enhancement for Cognitive Radio

Authors

1 Faculty of Electrical Engineering, University of Shahid Beheshti, Tehran, Iran

2 Faculty of Electrical Engineering, University of Shahid Sattari Aeronautical, Tehran, Iran

Abstract

Cognitive radios are expected to opportunisticly communicate with covering a wide range of the frequency spectrum by continously sensing the spectrum and identifying available channels. In this paper, we introduced an inductorless and differential wideband LNA, which uses the complementary current-reuse structure and active and passive - enhancement technique, which leads to increase voltage gain, reduction in power consumption and noise, in the signal receiving path. Therefore, the proposed LNA is able to achieve 50 MHz – 1.7 GHz bandwidth with  less than -14.26 dB, maximum voltage gain of 20.2 dB, minimum NF of 3.31 dB, while consuming only 1.82 mA from a supply voltage of 1.8 V to TSMC 0.18 µm CMOS technology. Also, simulations are performed using Spectre RF simulator.

Keywords


[1]      J. Mitola III, Cognitive Radio Architecture: The Engineering Foundations of Radio XML, Wiley Interscience, 2006.
[2]      J. Mitola III and G. Maguire, “Cognitive radio: making software radio more personal,” IEEE Pers. Communications, vol. 6, no. 4, pp. 13-18, Aug. 1999.
[3]      E. Hossain, D. Niyato and Z. Han, Dynamic Spectrum Access and Management in Cognitive Radio Networks, Cambridge University Press, 2009.
[4]      T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Commun. Surveys & Tutorials, vol. 11, no. 1, pp. 116-130, March 2009.
[5]      P. Jamshidi, “An ultra wideband low-power low-noise amplifier using coupled inductors,” In Proceedings of the 23rd Iranian Conf. on Elec. Engineering (ICEE), pp. 1220-1224, 2015.
[6]      J. H. Zhan and S. S. Taylor, “A 5 GHz resistive-feedback CMOS LNA for low-cost multi-standard applications,” In Proceedings of IEEE Inter. Solid-State Circuits Conf. (ISSCC), pp. 721-730, 2006.
[7]      J. Chen, B. Guo, B. Zhang and G. Wen, “An inductorless wideband common-gate LNA with dual capacitor cross-coupled feedback and negative impedance techniques,” Integration, The VLSI Journal, vol. 56, pp. 53-60, 2017.
[8]      W. Zhuo, X. Li, S. Shekhar, S. H. K. Embabi, J. P. de Gyvez, D. J. Allstot and E. Sanchez-Sinencio, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, vol. 52, no. 12, pp. 875-879, Dec. 2005.
[9]      E. A. Sobhy, A. A. Helmy, S. Hoyos, K. Entesari and E. Sanchez-Sinencio, “A 2.8 mW sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback,” IEEE Trans. Microw. Theory Techniques, vol. 59, no. 12, pp. 3154-3161, Dec. 2011.
[10]      F. Belmas, F. Hameau and J. M. Fournier, “A low-power inductorless LNA with double Gm enhancement in 130 nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1094-1103, May 2012. 
[11]      پرویز امیری، محمود صیفوری، بابک آفرین، آوا هدایتی‌پور، «طراحی پیش‌تقویت‌کننده RGC کم‌نویز مدار مجتمع CMOS با پهنای باند GHz 20 و بهره dBΩ 60،» مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحه 15-23، 1395.
[12]      H. G. Han, D. H. Jung, T. W.  Kim, “A 2.88 mW +9.06 dBm IIP3 common-gate LNA with dual cross-coupled capacitive feedback,” IEEE Trans. Microw. Theory Techniques, vol. 63, no. 3, pp. 1019-1025, March 2015.
[13]      مهران نظری، جواد یاوند حسنی، «طراحی یک تقویت‌کننده کم‌نویز کسکود ولتاژ پایین با خطینگی بالا به کمک روش تزویج مغناطیسی در باند GHz 45،» مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحه 751-760، 1396.
[14]      H. Zhang, E. Sanchez-Sinencio, “Linearization techniques for CMOS low noise amplifiers: A tutorial,” IEEE Trans. Circuits Syst. I, vol. 58, no. 1, pp. 22-36, Jan. 2011.
 
[15]      Z. Pan, C. Qin, Z. Ye, Y. Wang and Z. Yu, “Wideband inductorless low-power LNAs with Gm enhancement and noise-cancellation,” IEEE Trans. Circuits Syst. I, vol. 65, no. 1, pp. 26-38, Aug. 2017.
[16]      B. Razavi, “Cognitive radio design challenges and techniques,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1542-1553, Aug. 2010.
[17]      D. Zeng, C. Qin, L. Zhang, Y. Wang and Z. Yu, “An inductorless wideband low noise amplifier with current reuse and linearity enhancement,” In IEEE Circuits and Syst. Symp. (ISCAS), 2013.
[18]      B. Hu, X. P. Yu, W. M. Lim and K. S. Yeo, “Analysis and design of ultra-wideband low-noise amplifier with input/output bandwidth optimization and single-ended/differential-input reconfigurability,” IEEE Trans. On Indu. Electronics, vol. 61, no. 10, pp. 5672-5680, Oct. 2014.
[19]      M. Parvizi, K. Allidina and M. N. El-Gamal, “An ultra-low-power wideband inductorless CMOS LNA with tunable active shunt-feedback,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp. 1843-1853, May 2016.
[20]      S. Arshad, R. Ramzan, Q. Wahab, “50-830 MHz noise and distortion canceling CMOS low noise amplifier,” Integration, The VLSI Journal, vol. 60, pp. 63-73, 2018.
[21]      W. Chen, S. Yang, K. Cheng, “A 1.2V 490µW sub-GHz UWB CMOS LNA with current reuse negative feedback,” In IEEE Circuits and Syst. Symp. (ISCAS), 2018.