Image Reconstruction Error Minimization via Distribution Adaptation and Low-Rank Constraint

Document Type : Original Article

Authors

Faculty of IT & Computer Engineering, Urmia University of Technology, Urmia, Iran

Abstract

Visual domain adaptation aims to learn robust models for the test data by knowledge transferring from a training data where the training and test sets are from different distributions. Existing approaches attempt to solve domain shift problem with either adaptation across domains or performing low-rank constraints. In this paper, we propose a two-phases unsupervised approach referred as image reconstruction Error minimization via Distribution Adaptation and low-rank constraint (EDA), which benefits from both the distribution adaptation and the low-rank constraints to tackle distribution mismatch across domains. In the first phase, our proposed approach projects the training and test data onto a common subspace in which the marginal and conditional distribution differences of domains are minimized. Moreover, EDA benefits from domain invariant clustering to discriminate between various classes of data. In the second phase, for preserving data structure in the shared subspace, EDA minimizes the data reconstruction error using low-rank and sparse constraints. Overall, EDA solves the domain mismatch problem in cubic time complexity. The proposed approach is evaluated on variety of visual benchmark datasets and its performance is compared with the other state-of-the-art domain adaptation methods. The average accuracy of EDA on 32 experiments is determined 68.33% where outperforms other state-of-the-art domain adaptation methods with 4.28% improvement. 

Keywords


[1]      Gong, B., Grauman, K. and Sha, F., Reshaping visual datasets for domain adaptation. In Advances in Neural Information Processing Systems, pp. 1286-1294, 2013.
[2]      PAN, S. J., AND YANG, Q., A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), pp. 1345-1359, 2010.
[3]      Pan, S.J., Tsang, I.W., Kwok, J.T. and Yang, Q., Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks22(2), pp.199-210, 2011.
[4]      Si, S., Tao, D. and Geng, B., Bregman divergence-based regularization for transfer subspace learning. IEEE Transactions on Knowledge and Data Engineering22(7), pp.929-942, 2010.
[5]      Gretton, A., Borgwardt, K., Rasch, M.J., Scholkopf, B. and Smola, A.J., A kernel method for the two-sample problem. arXiv preprint arXiv:0805.2368, 2008.
[6]      Long, M., Wang, J., Ding, G., Sun, J. and Yu, P.S., Transfer joint matching for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1410-1417, 2014.
[7]      Gong, B., Shi, Y., Sha, F. and Grauman, K., Geodesic flow kernel for unsupervised domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on , pp. 2066-2073, IEEE, 2012, June.
[8]      Satpal, S. and Sarawagi, S., Domain adaptation of conditional probability models via feature subsetting. In European Conference on Principles of Data Mining and Knowledge Discovery, Springer, Berlin, Heidelberg, pp. 224-235, 2007, September.
[9]      Tahmoresnezhad, J. and Hashemi, S., Visual domain adaptation via transfer feature learning. Knowledge and Information Systems50(2), pp.585-605, 2017.
[10]      Long, M., Wang, J., Ding, G., Sun, J. and Philip, S.Y., Transfer feature learning with joint distribution adaptation. In Computer Vision (ICCV), 2013 IEEE International Conference on pp. 2200-2207, 2013, December.
[11]      Quanz, B., Huan, J. and Mishra, M, Knowledge transfer with low-quality data: A feature extraction issue. IEEE Transactions on Knowledge and Data Engineering24(10), pp.1789-1802, 2012.
[12]      Zhang, L., Zuo, W. and Zhang, D., LSDT: Latent sparse domain transfer learning for visual adaptation. IEEE Transactions on Image Processing25(3), pp.1177-1191, 2016.
[13]      Xu, Y., Fang, X., Wu, J., Li, X. and Zhang, D., Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Transactions on Image Processing25(2), pp.850-863, 2016.
[14]      Gong, B., Grauman, K. and Sha, F., February. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In International Conference on Machine Learning, pp. 222-230, 2013.
[15]      Ma, Z., Yang, Y., Sebe, N. and Hauptmann, A.G., Knowledge adaptation with partiallyshared features for event detectionusing few exemplars. IEEE transactions on pattern analysis and machine intelligence36(9), pp.1789-1802, 2014.
[16]      Satpal, S. and Sarawagi, S., Domain adaptation of conditional probability models via feature subsetting. Springer, Berlin, Heidelberg. In European Conference on Principles of Data Mining and Knowledge Discovery, pp. 224-235, 2007, September.
[17]      Long, M., Wang, J., Ding, G., Sun, J. and Philip, S.Y., Transfer feature learning with joint distribution adaptation. In Computer Vision (ICCV), 2013 IEEE International Conference on pp. 2200-2207, 2013, December.
[18]      Tahmoresnezhad, J. and Hashemi, S., A generalized kernel-based random k-samplesets method for transfer learning. Iranian Journal of Science and Technology Transactions of Electrical Engineering39, pp. 193-207, 2015.
[19]      Shao, M., Kit, D. and Fu, Y., Generalized transfer subspace learning through low-rank constraint. International Journal of Computer Vision109(1-2), pp. 74-93, 2014.
[20]      Wright, J., Ganesh, A., Rao, S., Peng, Y. and Ma, Y., Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in neural information processing systems, pp. 2080-2088, 2009.
[21]      طاهره زارع بیدکی و محمد تقی صادقی، «بهینه‌سازی وزن‌ها در کرنل مرکب برای طبقه‌بند مبتنی بر نمایش تنک کرنلی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 1059-1072، 1396.
[22]      Lin, Z., Chen, M. and Ma, Y., The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.
[23]      Saenko, K., Kulis, B., Fritz, M. and Darrell, T., Adapting visual category models to new domains. Springer, Berlin, Heidelberg.
 In European conference on computer vision, pp. 213-226, 2010, September.
[24]      Griffin, G., Holub, A. and Perona, P., Caltech-256 object category dataset, 2007.
[25]      Sim, T., Baker, S. and Bsat, M., The CMU pose, illumination, and expression (PIE) database. In Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on pp. 53-58, 2002, May.
[26]      Jolliffe I, Principal component analysis, Wiley, vol. 2, pp. 433-459, 2002.
[27]      Luo, L., Wang, X., Hu, S., Wang, C., Tang, Y. and Chen, L., 2017. Close yet distinctive domain adaptation. arXiv preprint arXiv:1704.04235.
[28]      Liu, J., Li, J. and Lu, K., Coupled local–global adaptation for multi-source transfer learning. Neurocomputing275, pp.247-254, 2018.
[29]      Li, S., Song, S., Huang, G., Ding, Z. and Wu, C., Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation. IEEE Transactions on Image Processing27(9), pp. 4260-4273, 2018.
[30]      مهرداد حیدری ارجلو، سید قدرت الله سیف السادات و مرتضی رزاز، «یک روش هوشمند تشخیص جزیره در شبکه توزیع دارای تولیدات پراکنده مبتنی بر تبدیل موجک و نزدیک‌ترین k-همسایگی (kNN)»، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 1، صفحات 15-26، 1392.