[1] Gong, B., Grauman, K. and Sha, F., Reshaping visual datasets for domain adaptation. In Advances in Neural Information Processing Systems, pp. 1286-1294, 2013.
[2] PAN, S. J., AND YANG, Q., A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), pp. 1345-1359, 2010.
[3] Pan, S.J., Tsang, I.W., Kwok, J.T. and Yang, Q., Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 22(2), pp.199-210, 2011.
[4] Si, S., Tao, D. and Geng, B., Bregman divergence-based regularization for transfer subspace learning. IEEE Transactions on Knowledge and Data Engineering, 22(7), pp.929-942, 2010.
[5] Gretton, A., Borgwardt, K., Rasch, M.J., Scholkopf, B. and Smola, A.J., A kernel method for the two-sample problem. arXiv preprint arXiv:0805.2368, 2008.
[6] Long, M., Wang, J., Ding, G., Sun, J. and Yu, P.S., Transfer joint matching for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1410-1417, 2014.
[7] Gong, B., Shi, Y., Sha, F. and Grauman, K., Geodesic flow kernel for unsupervised domain adaptation. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on , pp. 2066-2073, IEEE, 2012, June.
[8] Satpal, S. and Sarawagi, S., Domain adaptation of conditional probability models via feature subsetting. In European Conference on Principles of Data Mining and Knowledge Discovery, Springer, Berlin, Heidelberg, pp. 224-235, 2007, September.
[9] Tahmoresnezhad, J. and Hashemi, S., Visual domain adaptation via transfer feature learning. Knowledge and Information Systems, 50(2), pp.585-605, 2017.
[10] Long, M., Wang, J., Ding, G., Sun, J. and Philip, S.Y., Transfer feature learning with joint distribution adaptation. In Computer Vision (ICCV), 2013 IEEE International Conference on pp. 2200-2207, 2013, December.
[11] Quanz, B., Huan, J. and Mishra, M, Knowledge transfer with low-quality data: A feature extraction issue. IEEE Transactions on Knowledge and Data Engineering, 24(10), pp.1789-1802, 2012.
[12] Zhang, L., Zuo, W. and Zhang, D., LSDT: Latent sparse domain transfer learning for visual adaptation. IEEE Transactions on Image Processing, 25(3), pp.1177-1191, 2016.
[13] Xu, Y., Fang, X., Wu, J., Li, X. and Zhang, D., Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Transactions on Image Processing, 25(2), pp.850-863, 2016.
[14] Gong, B., Grauman, K. and Sha, F., February. Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation. In International Conference on Machine Learning, pp. 222-230, 2013.
[15] Ma, Z., Yang, Y., Sebe, N. and Hauptmann, A.G., Knowledge adaptation with partiallyshared features for event detectionusing few exemplars. IEEE transactions on pattern analysis and machine intelligence, 36(9), pp.1789-1802, 2014.
[16] Satpal, S. and Sarawagi, S., Domain adaptation of conditional probability models via feature subsetting. Springer, Berlin, Heidelberg. In European Conference on Principles of Data Mining and Knowledge Discovery, pp. 224-235, 2007, September.
[17] Long, M., Wang, J., Ding, G., Sun, J. and Philip, S.Y., Transfer feature learning with joint distribution adaptation. In Computer Vision (ICCV), 2013 IEEE International Conference on pp. 2200-2207, 2013, December.
[18] Tahmoresnezhad, J. and Hashemi, S., A generalized kernel-based random k-samplesets method for transfer learning. Iranian Journal of Science and Technology Transactions of Electrical Engineering, 39, pp. 193-207, 2015.
[19] Shao, M., Kit, D. and Fu, Y., Generalized transfer subspace learning through low-rank constraint. International Journal of Computer Vision, 109(1-2), pp. 74-93, 2014.
[20] Wright, J., Ganesh, A., Rao, S., Peng, Y. and Ma, Y., Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in neural information processing systems, pp. 2080-2088, 2009.
[21] طاهره زارع بیدکی و محمد تقی صادقی، «بهینهسازی وزنها در کرنل مرکب برای طبقهبند مبتنی بر نمایش تنک کرنلی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 1059-1072، 1396.
[22] Lin, Z., Chen, M. and Ma, Y., The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055, 2010.
[23] Saenko, K., Kulis, B., Fritz, M. and Darrell, T., Adapting visual category models to new domains. Springer, Berlin, Heidelberg.
In European conference on computer vision, pp. 213-226, 2010, September.
[24] Griffin, G., Holub, A. and Perona, P., Caltech-256 object category dataset, 2007.
[25] Sim, T., Baker, S. and Bsat, M., The CMU pose, illumination, and expression (PIE) database. In Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on pp. 53-58, 2002, May.
[26] Jolliffe I, Principal component analysis, Wiley, vol. 2, pp. 433-459, 2002.
[27] Luo, L., Wang, X., Hu, S., Wang, C., Tang, Y. and Chen, L., 2017. Close yet distinctive domain adaptation. arXiv preprint arXiv:1704.04235.
[28] Liu, J., Li, J. and Lu, K., Coupled local–global adaptation for multi-source transfer learning. Neurocomputing, 275, pp.247-254, 2018.
[29] Li, S., Song, S., Huang, G., Ding, Z. and Wu, C., Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation. IEEE Transactions on Image Processing, 27(9), pp. 4260-4273, 2018.
[30] مهرداد حیدری ارجلو، سید قدرت الله سیف السادات و مرتضی رزاز، «یک روش هوشمند تشخیص جزیره در شبکه توزیع دارای تولیدات پراکنده مبتنی بر تبدیل موجک و نزدیکترین k-همسایگی (kNN)»، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 1، صفحات 15-26، 1392.