Multi Objective Optimization for Computational and Communicational Resource Allocation Based on Non-orthogonal Multiple Access, Cloud and Edge Servers Participation in 5 Generation Networks

Document Type : Original Article

Authors

1 MSc Student of Electrical Engineering, Yazd University, Yazd, Iran

2 Faculty of Electrical Engineering, Yazd University, Yazd, Iran

Abstract

Mobile Edge computing is a new paradigm that allows users to combat the constraints of mobile devices For overcoming the long delay of cloud computing which decreases the quality of service, the users send their data to the server which is located at the edge of the network instead of sending a part of the program to a cloud server which is located in place far from the users. In this paper, a system which consists of a cell and several users is considered in which the network users to accomplish their computations request service from cloud and edge servers that are participating with each other. It is assumed that the users access the radio spectrum by a Non-orthogonal Multiple Access (NOMA) method and the queue theory is used for modeling the problem from the users and server sides. The main goal is to minimize the total users' energy consumption, the delay in users' receiving service, and the whole cost of using servers. The mathematical model of this problem would result in a multi-objective constraint non-convex optimization problem. SCA method is used to achieve the globally optimum solution. Through the simulation results, it is shown that by the applied assumptions in the proposed model, the amount of energy, delay and total cost of network is decreased around 50%.

Keywords


[1]     J. Zhang, W. Xia, F. Yan, L. Shen, “Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing,” IEEE Access, vol. 6, pp. 19324-19337, 2018.
[2]     X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-efficient admission of delay-sensitive tasks for mobile edge computing,” IEEE Trans. on Communications, vol. 66, no. 6, pp. 2603-2616, 2018.
[3]     F. Wang, J. Xu, X. Wang, S. Cui, “Joint offloading and computing optimization in wireless powered mobile-edge computing systems,” IEEE Trans. on Wireless Communications, vol. 17, no. 3, pp. 1784-1797, 2018.
[4]     N. Nouri, and A. Tadaion. “Energy optimal resource allocation for mobile edge computation offloading in presence of computing access point,” In Communication and Information Theory (IWCIT), 2018 Iran Workshop on, pp. 1-6, 2018.
[5]     J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswmi, “Internet of things(IoT): a vision, architectural elements, and future directions,” ELSEVIER Future Gener. Comp. Syst., vol. 29, no. 7, pp. 1645-1660, 2013.
[6]     N. Nouri, P. Rafiee and A. Tadaion. “NOMA-based energy-delay trade-off for mobile edge computation offloading in 5G networks,” International Symposium on Telecommunications (IST), pp. 522-527, 2018.
[7]     S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, “Cloudbased augmentation for mobile devices: motivation, taxonomies, and open challenges,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 337–368, 2014.
[8]     سیمین قاسمی فلاورجانی ، محمدعلی نعمتبخش ، بهروز شاهقلی قهفرخی ، « تخصیص وظایف چندهدفه در واگذاری به ابر سیار » مجله مهندسی برق دانشگاه تبریز، جلد ۴۶، شماره ۴، صفحات 217_232، زمستان 1395.
[9]     وحید ستاری نائینی ، یاسمین سالم ، عصمت راشدی ، « بهره‌گیری از الگوریتم پرش ترکیبی قورباغه جهت کاهش مصرف انرژی مراکز داده ابری از طریق بهینه‌سازی مدیریت زمانبندی کارها و ترکیب مؤثر ماشینهای مجازی » مجله مهندسی برق دانشگاه تبریز، جلد ۴8، شماره 2،صفحات 687_698، تابستان 1397.
[10]  N. Fernando, S. Loke, and W. Rahayu, “Mobile cloud computing: A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106, 2013.
[11]  Y. Liu, M. J. Lee, and Y. Zheng. “Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system,” IEEE Trans. on Mobile Computing, vol. 15, no. 10, pp.2398-2410, 2016.
[12]  W. Song, and X. Su, “Review of mobile cloud computing,” Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on. IEEE, pp 1–4, 2011.
[13]  M. Satyanarayanan, V. Bahl, R. Caceres and N. Davies, “The case for vm-based cloudlets in mobile computing,” IEEE Pervasive Computing, no. 4, pp. 14–23, 2009.
[14]  M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, and A.Neal, “Mobile-edge computing,” Mobile-Edge Comput-Introductory, Tech.Rep, pp. 5896–5907, 2014.
[15]  J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task scheduling for mobile-edge computing systems,” IEEE International Symposium on Information Theory (ISIT), pp. 1451-1455, 2016.
[16]  Y. Mao, J. Zhang, K. B. Letaief, “Dynamic computation offloading for mobile-edge computing with energy harvesting devices,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590-3605, 2016.
[17]  M. Kamoun, W. Labidi, and M. Sarkiss, “Joint resource allocation
and offloading strategies in cloud enabled cellular networks,”  IEEE International Conference on Communications (ICC), pp. 5529-5534, 2015.
[18]  W. Labidi, M. Sarkiss, and M. Kamoun, “Energy-optimal resource
scheduling and computation offloading in small cell networks,” International Conference on Telecommunications (ICT), pp. 313-318, 2015.
[19]  K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, and Y. Zhang, “Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks,” IEEE Access, vol. 4, pp. 5896-5907, 2016.
[20]  X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-edge cloud computing,” IEEE/ACM Trans. on Networking, vol. 24, no. 5, pp. 2795-2808, 2016.
[21]  M. H. Chen, B. Liang, and M. Dong, “A semi definite relaxation approach to mobile cloud offloading with computing access point,” IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 186-190, 2015.
[22]  M. H. Chen, M. Dong, and B. Liang, “Joint offloading decision and resource allocation for mobile cloud with computing access point,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3516-3520, 2016.
[23]  S. Cao, X. Tao,Y. Hou, and Q. Cui, “An energy-optimal offloading algorithm of mobile computing based on hetnets,” International Conference on Connected Vehicles and Expo (ICCVE), 254-258, 2015.
[24]  Y. Zhao, S. Zhou, T. Zhao, and Z. Niu, “Energy-efficient task offloading for multiuser mobile cloud computing,” IEEE/CIC International Conference on Communications in China (ICCC), pp. 1-5, 2015.
[25]  M. Deng, H. Tian, and B. Fan, “Fine-granularity based application offloading policy in small cell cloud-enhanced networks,” IEEE International Conference on Communications Workshops (ICC), pp. 638-643, 2016.
[26]  Y. Mao, J. Zhang, S.H. Song, and K. B. Letaief, “Power-delay tradeoff in multi-user mobile-edge computing systems,” IEEE Global Communications Conference (GLOBECOM), pp. 1-6, 2016.
[27]  C. C. Coskun and E. Ayanoglu, “Energy- and spectral-efficient resource allocation algorithm for heterogeneous networks,” IEEE Trans. Veh. Technol, vol. 67, no. 1, pp. 590–603, 2018.
[28]  محمد لاری، « تخصیص منابع جهت کمینه‌سازی تأخیر ارسال در سامانه‌های مخابراتی تغذیه‌شونده به‌صورت بی‌سیم » مجله مهندسی برق دانشگاه تبریز، جلد47، شماره 3، صفحات 1205_1212، پاییز 1396.
[29]  نرگس پرهیزی ، موسی مرزبند ، سید مازیار میرحسینی مقدم ، بهنام محمدی ایواتلو ، فاطمه آذرینژادیان ، « پیاده‌سازی عملی یک سیستم مدیریت انرژی برای یک ریزشبکه متصل به شبکه سراسری با استفاده از الگوریتم رقابت استعماری چندبعدی» مجله مهندسی برق دانشگاه تبریز، جلد46، شماره 1، صفحات 25_40، بهار 1395.
[30]  H. Zhang, S. Huang, C. Jiang, K. Long, V. C. Leung and H. V. Poor, “Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1936–1947, 2017.
[31]  W. Hao and S. Yang, “Small cell cluster-based resource allocation for wireless backhaul in two-tier heterogeneous networks with massive MIMO,” IEEE Trans. on Vehicular Technology, vol. 67, no. 1, pp. 509–523, 2018.
[32]  X. Chen, “Decentralized computation offloading game for mobile cloud computing,” IEEE Trans. on Parallel and Distributed Systems, vol. 26, no. 4 , pp.974-983, 2015.
[33]  S. Sardellitti, G. Scutari, and S. Barbarossa. “Joint optimization of radio and computational resources for multicell mobile-edge computing,” IEEE Trans. on Signal and Information Processing over Networks , vol. 1, no. 2, pp.89-103, 2015.
[34]  M. Jia, J. Cao, W. Liang, “Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks,” IEEE Trans. on Cloud Computing, vol. 5, no. 4, pp. 725-737, 2017.
[35]  F. Fang, H. Zhang, J. Cheng, VC. Leung, “Energy-efficient resource allocation for downlink non-orthogonal multiple access network,” IEEE Trans. on Communications, vol. 64, no. 9, pp. 3722-3732, 2016.
[36]  Y. Wang, X. Lin, M. Pedram, “A nested two stage game-based optimization framework in mobile cloud computing system,” EEE Seventh International Symposium on Service-Oriented System Engineering, pp. 494-502, 2013.
[37]  J. Zhu, J. Wang, Y. Huang, S. He, X. You, L. Yang, “On optimal power allocation for downlink non-orthogonal multiple access systems,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 12, pp.  2744-2757, 2017.
[38]  G. Scutari, F. Facchinei, L. Lampariello, and P. Song, “Parallel and distributed methods for nonconvex optimization-Part I&II: Theory & Applications,” IEEE Trans. on Signal Processing, vol. 65, no. 8, pp. 840-844, 2017.