A new approach for quantifying the voltage and current harmonic contribution of each harmonic source in interconnected networks based on maximum harmonic amplitude reduction

Document Type : Original Article

Authors

Faculty of Electrical Engineering,Amirkabir University of Technology, Tehran, Iran

Abstract

Due to importance of harmonic analysis in interconnected network. In this paper, a method is proposed that could be determined the main responsible of the harmonic pollution of the desired bus voltage or the current desired line in interconnected networks. In this paper, the defects of using the "vector projection" method are presented to solve the above problem; so, a method is proposed based on reducing the amplitude of the harmonic voltage and current due to the reduction of the harmonic amplitude.  Both methods are evaluated in a 6-buses IEEE grid using Digsilent and MATLAB software at a specific harmonic frequency. The results of the evaluation of the two methods indicate that the method of "vector projection" is not necessarily the correct answer if the number of harmonic sources is more than two sources; consequently. However, the results of the proposed method are highly rational in the interconnected grids.

Keywords


[1]      علیرضا حسنی اصل، مهدی معلم، محمد کیوان‌فرد، «بهبود عملکرد فیلترهای هارمونیکی جبران‌کننده استاتیکی توان راکتیو برای کوره‌های قوس الکتریکی با آنالیز حساسیت و استفاده از نتایج عملی»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 1، صفحات 75-86،     بهار 1395.
[2]      محسن محمودی، علی عجمی، ابراهیم سیفی نجمی، «طراحی و کنترل ساختارهای جدید پایش‌گر یکپارچه کیفیت توان بین خطی بر اساس مبدل‌های چندپورته AC/AC»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحات 237-250، تابستان 1395.
[3]      K. M. Islam, and A.H. Samra, “Identification of harmonic sources in power distribution systems,” Southeastcon'97. Engineering new New Century. IEEEProceedings, pp. 301-303, 1997.
[4]      W. Xu, X. Liu and Y. Liu, “An investigation on the validity of power-direction method for harmonic source determination,” IEEE Transactions on Power Delivery, vol. 18, no. 1, pp. 214-219, 2003.
[5]      W. Xu and Y. Liu, “A method for determining customer and utility harmonic contributions at the point of common coupling,” IEEE Transactions on Power Delivery, vol. 15, no. 2, pp. 804-811, 2000.
[6]      C. Li and W. Xu, “On defining harmonic contributions at the point of common coupling,” IEEE Power Engineering Review, vol. 22, no. 7, pp. 44-45, 2002.
[7]       N. Hamzah, A. Mohamed and A. Hussain, “Harmonic source location at the point of common coupling based on voltage magnitude,” TENCON 2004. 2004 IEEE Region 10 Conference, vol. 100, pp. 220-223, 2004.
[8]      C. Chen, X. Liu, D. Koval, W. Xu and T. Tayjasanant, “Critical impedance method-a new detecting harmonic sources method in distribution systems,” IEEE Transactions on Power Delivery, vol. 19, no. 1, pp. 288-297, 2004.
[9]      S. F. de Paula Silva and J. C. de Oliveira, “The sharing of responsibility between the supplier and the consumer for harmonic voltage distortion: A case study,” Electric Power Systems Research, vol. 78, no. 11, pp. 1959-1964, 2008.
[10]      M. Farhoodnea, A. Mohamed, H. Shareef and H. Zayandehroodi, “An enhanced method for contribution assessment of utility and customer harmonic distortions in radial and weakly meshed distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 43, no. 1, pp. 222-229, 2012.
[11]      H. Hua, X. Jia, D. Cao and C. Zhao, “Practical method to determine the harmonic contribution of a specific harmonic load,”  Harmonics and Quality of Power (ICHQP), IEEE 15th International Conference, pp. 769-773, 2012.
[12]      Z. Po. Du, J. Arrillaga, N. R. Watson and S. Chen, “Identification of harmonic sources of power systems using state estimation,” IEE Proceedings-Generation, Transmission and Distribution, vol. 146, no. 1, pp. 7-12, 1999.
[13]      G. D'Antona, C. Muscas and S. Sulis, “State estimation for the localization of harmonic sources in electric distribution systems,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 5, pp. 1462-1470, 2009.
[14]      E. Gursoy, and D. Niebur, “Harmonic load identification using complex independent component analysis,”  IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 285-292, 2009.
[15]      K. Pulimera and P. K. Rajan, “Independent component analysis for harmonic source estimation from piecewise constant parameter mixed measurements,” In System Theory (SSST), IEEE 43rd Southeastern Symposium, pp. 81-86, 2011.
[16]      A. Kumar, B. Das and J. Sharma, “Determination of location of multiple harmonic sources in a power system,” International journal of electrical power & energy systems, vol. 26, no. 1,        pp. 73-78, 2004.
[17]      A. R. Abdullah, G. Z. Peng, S. A. Ghani and M. H. Jopri, “A new vector draft method for harmonic source detection at point of common coupling,” Power Engineering and Optimization Conference (PEOCO), IEEE 8th International, pp. 110-114, 2014.
[18]      PowerFactory - DIgSILENT, “1 Harmonic Load Characteristic,” Retrieved June 2018, https://www.digsilent.de/en/faq-reader-powerfactory/how-do-i-model-a-load-containing-harmonic-components-based-on-its-spectrum/tags/load%2Charmonics.html