[1] S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwitz, "Big data, analytics and the path from insights to value," MIT sloan management review, vol. 52, p. 21, 2011.
[2] S. Cheng, Y. Shi, Q. Qin, and R. Bai, "Swarm intelligence in big data analytics," in International Conference on Intelligent Data Engineering and Automated Learning, 2013, pp. 417-426.
[3] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets: Cambridge University Press, 2014.
[4] A. K. Jain, M. N. Murty, and P. J. Flynn, "Data clustering: a review," ACM computing surveys (CSUR), vol. 31, pp. 264-323, 1999.
[5] J. A. Hartigan, "Clustering algorithms (probability & mathematical statistics)," ed: John Wiley & Sons Inc New York, 1975.
[6] R. Xu and D. Wunsch, "Survey of clustering algorithms," IEEE Transactions on neural networks, vol. 16, pp. 645-678, 2005.
[7] J. A. Hartigan and M. A. Wong, "Algorithm AS 136: A k-means clustering algorithm," Journal of the Royal Statistical Society. Series C (Applied Statistics), vol. 28, pp. 100-108, 1979.
[8[ احسان نادرنژاد، حمید حسنپور و حسین میارنعیمی، «استفاده از مشخصههای آماری دادهها و پردازش بلوکی برای قطعه بندی تصاویر»، فصلنامه مهندسی برق دانشگاه تبریز، دورهی ۳۹ شمارهی ۱، صفحهی ۴۸ تا ۵۷، بهار ۱۳۸۸.
[9] A. S. Shirkhorshidi, S. Aghabozorgi, T. Y. Wah, and T. Herawan, "Big data clustering: a review," in International Conference on Computational Science and Its Applications, 2014, pp. 707-720.
[10] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm intelligence: Elsevier, 2001.
[11] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Advances in engineering software, vol. 69, pp. 46-61, 2014.
[12] A. Sinha and P. K. Jana, "A novel K-means based clustering algorithm for big data," in Advances in Computing, Communications and Informatics (ICACCI), 2016 International Conference on, 2016, pp. 1875-1879.
[13] M. Jain and C. Verma, "Adapting k-means for Clustering in Big Data," International Journal of Computer Applications, vol. 101, pp. 19-24, 2014.
[14] A. Saini, J. Minocha, J. Ubriani, and D. Sharma, "New approach for clustering of big data: DisK-means," in Computing, Communication and Automation (ICCCA), 2016 International Conference on, 2016, pp. 122-126.
[15] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of careful seeding," presented at the Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, New Orleans, Louisiana, 2007.
[16] S. H. Razavi, E. O. M. Ebadati, S. Asadi, and H. Kaur, "An efficient grouping genetic algorithm for data clustering and big data analysis," in Computational Intelligence for Big Data Analysis, ed: Springer, 2015, pp. 119-142.
[17] S. Saitta, B. Raphael, and I. F. Smith, "A comprehensive validity index for clustering," Intelligent Data Analysis, vol. 12, pp. 529-548, 2008.
[18] A. Abraham, S. Das, and S. Roy, "Swarm intelligence algorithms for data clustering," in Soft computing for knowledge discovery and data mining, ed: Springer, 2008, pp. 279-313.
[19] S. H. Kwon, "Cluster validity index for fuzzy clustering," Electronics letters, vol. 34, pp. 2176-2177, 1998.
[20] X. Cui, T. E. Potok, and P. Palathingal, "Document clustering using particle swarm optimization," in Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE, 2005, pp. 185-191.
[21] M. G. Omran, A. Salman, and A. P. Engelbrecht, "Dynamic clustering using particle swarm optimization with application in image segmentation," Pattern Analysis and Applications, vol. 8, p. 332, 2006.
[22] U. Maulik and S. Bandyopadhyay, "Performance evaluation of some clustering algorithms and validity indices," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp. 1650-1654, 2002.
[23] C. Zhang, D. Ouyang, and J. Ning, "An artificial bee colony approach for clustering," Expert Systems with Applications, vol. 37, pp. 4761-4767, 2010.
[24] G. Krishnasamy, A. J. Kulkarni, and R. Paramesran, "A hybrid approach for data clustering based on modified cohort intelligence and K-means," Expert Systems with Applications, vol. 41, pp. 6009-6016, 2014.
[25] Y. Lu, B. Cao, C. Rego, and F. Glover, "A Tabu search based clustering algorithm and its parallel implementation on Spark," Applied Soft Computing, vol. 63, pp. 97-109, 2018.
[26] D. Karaboga and C. Ozturk, "A novel clustering approach: Artificial Bee Colony (ABC) algorithm," Applied soft computing, vol. 11, pp. 652-657, 2011.
[27] X. Han, L. Quan, X. Xiong, M. Almeter, J. Xiang, and Y. Lan, "A novel data clustering algorithm based on modified gravitational search algorithm," Engineering Applications of Artificial Intelligence, vol. 61, pp. 1-7, 2017.
[28] A. Banharnsakun, "A MapReduce-based artificial bee colony for large-scale data clustering," Pattern Recognition Letters, vol. 93, pp. 78-84, 2017.
[29] C. Muro, R. Escobedo, L. Spector, and R. Coppinger, "Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations," Behavioural processes, vol. 88, pp. 192-197, 2011.
[30] T. Caliński and J. Harabasz, "A dendrite method for cluster analysis," Communications in Statistics-theory and Methods, vol. 3, pp. 1-27, 1974.
[32] W. M. Rand, "Objective criteria for the evaluation of clustering methods," Journal of the American Statistical association, vol. 66, pp. 846-850, 1971.
[33] D. Pelleg and A. W. Moore, "X-means: Extending k-means with efficient estimation of the number of clusters," in Icml, 2000, pp. 727-734.
[34] Z. F. Knops, J. A. Maintz, M. A. Viergever, and J. P. Pluim, "Normalized mutual information based registration using k-means clustering and shading correction," Medical image analysis, vol. 10, pp. 432-439, 2006.
[35] J. Demšar, "Statistical comparisons of classifiers over multiple data sets," Journal of Machine learning research, vol. 7, pp. 1-30, 2006.
[36] P. Fränti and O. Virmajoki, "Iterative shrinking method for clustering problems," Pattern Recognition, vol. 39, pp. 761-775, 2006.
[37] I. Kärkkäinen and P. Fränti, Dynamic local search algorithm for the clustering problem: University of Joensuu, 2002.
[38] P. Fränti, R. Mariescu-Istodor, and C. Zhong, "XNN graph," in Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), 2016, pp. 207-217.
[39] P. Franti, O. Virmajoki, and V. Hautamaki, "Fast agglomerative clustering using a k-nearest neighbor graph," IEEE transactions on pattern analysis and machine intelligence, vol. 28, pp. 1875-1881, 2006.
[40] سمیرا رفیعی، پرهام مرادی، «بهبود عملکرد الگوریتم خوشهبندی فازی سی-مینز با وزندهی اتوماتیک و محلی ویژگیها»، مجلهی مهندسی برق دانشگاه تبریز، دورهی ۴۶، صفحهی ۷۵ تا ۸۶، تابستان ۱۳۹۵.
[41] I. Aljarah and S. A. Ludwig, "Parallel particle swarm optimization clustering algorithm based on mapreduce methodology," in Nature and biologically inspired computing (NaBIC), 2012 fourth world congress on, 2012, pp. 104-111.
[42] B. Wu, G. Wu, and M. Yang, "A mapreduce based ant colony optimization approach to combinatorial optimization problems," in Natural Computation (ICNC), 2012 Eighth International Conference on, 2012, pp. 728-732.
[43] J. Li, X. Hu, Z. Pang, and K. Qian, "A parallel ant colony optimization algorithm based on fine-grained model with GPU-acceleration," International Journal of Innovative Computing, Information and Control, vol. 5, pp. 3707-3716, 2009.
[44] D.-W. Huang and J. Lin, "Scaling populations of a genetic algorithm for job shop scheduling problems using MapReduce," in Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on, 2010, pp. 780-785.