[1] D. Seeto, S.-D. He, and C.-K. Woo, “Pricing electric harmonics. Energy, vol. 20, no. 7, pp. 617-621, 1995.
[2] میلاد دلالی، علیرضا جلیلیان، «محاسبه آلودگی هارمونیکی و میانهارمونیکی ژنراتورهای القائی دوسو تغذیه بادی با استفاده از یک روش ترکیبی»، مجله مهندسی برق دانشگاه تبریز، جلد 42، شماره 2، صفحه 25-37، 1391.
[3] عباس کارگر، فهیمه صیادی شهرکی، جعفر سلطانی، «خازنگذاری بهینه در شبکه توزیع دارای اغتشاش هارمونیکی برای تنظیم ولتاژ و کاهش تلفات با استفاده از PSO»، مجله مهندسی برق دانشگاه تبریز, جلد 41، شماره 1، صفحه 33-43، 1390.
[4] D. Serfontein, et al., “Continuous Event-Based Harmonic Impedance Assessment Using Online Measurements” IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 10, pp. 2214-2220, 2016.
[5] M.O. Prates, et al. “Power system impedance measurement based on wavelet voltage imposed” in 16th International Conference on Harmonics and Quality of Power (ICHQP), pp. 798-802, Bucharest, Romania, 2014.
[6] H.L.M. Monteiro, et al. “A real time implementation of an harmonic impedance estimator” in 17th International Conference on Harmonics and Quality of Power (ICHQP), pp. 333-337, Belo Horizonte, Brazil, 2016.
[7] W. Xu, et al., “Measurement of network harmonic impedances: practical implementation issues and their solutions” IEEE Transactions on Power Delivery, vol. 17, no.1, pp. 210-216, 2002.
[8] A. Murugan and V.S. Kumar, “Determining true harmonic contributions of sources using neural network” Neurocomputing, pp. 72-80, 2016.
[9] J. Mazumdar, R.G. Harley, and F. Lambert, “System and method for determining harmonic contributions from non-linear loads using recurrent neural networks” in International Joint Conference on Neural Networks (IJCNN), pp. 366-371, Montreal, Canada, 2005.
[10] J. Mazumdar, et al., “Intelligent tool for determining the true harmonic current contribution of a customer in a power distribution network” IEEE Transactions on Industry Applications, vol. 44, no.5, pp. 1477-1485, 2008.
[11] F. Karimzadeh, S. Esmaeili, and S.H. Hosseinian, “A novel method for noninvasive estimation of utility harmonic impedance based on complex independent component analysis” IEEE Transactions on Power Delivery, vol. 30, no. 4, pp. 1843-1852, 2015.
[12] F. Karimzadeh, , S. Esmaeili, and S.H. Hosseinian, “Method for determining utility and consumer harmonic contributions based on complex independent component analysis” IET Generation, Transmission & Distribution, vol. 10, no. 2, pp. 526-534, 2016.
[13] X. Zhao, and H. Yang, “A New Method to Calculate the Utility Harmonic Impedance Based on FastICA” IEEE Transactions on Power Delivery, vol. 31, no. 1, pp. 381-388, 2016.
[14] E.O. de Matos, et al., “Using linear and non-parametric regression models to describe the contribution of non-linear loads on the voltage harmonic distortions in the electrical grid” IET Generation, Transmission & Distribution, vol. 10, no. 8, pp. 1825-1832, 2016.
[15] M. Shojaie, and H. Mokhtari, “A method for determination of harmonics responsibilities at the point of common coupling using data correlation analysis” IET Generation, Transmission & Distribution, vol. 8, no. 1, p.p. 142-150, 2014.
[16] W. Xu, et al. “A method to determine the harmonic contributions of multiple loads” in IEEE Power & Energy Society General Meeting, pp. 1-6, Calgary, Canada, 2009.
[17] A. Zebardast, and H. Mokhtari, “Technique for online tracking of a utility harmonic impedance using by synchronising the measured samples” IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1240-1247, 2016.
[18] P.J. Talacek, and N.R. Watson, “Marginal pricing of harmonic injections: An analysis of the resulting payments” IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 640-645, 2002.
[19] Y. Peng, et al., “Harmonic pricing model based on harmonic costs and harmonic current excessive penalty” in 2nd international conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), pp. 4011-4014, Dengleng, China, 2011.
[20] Z. Lin, et al., “Economic evaluation of harmonic cost” in IEEE 8th international conference on Power Electronics and Motion Control(IPEMC-ECCE Asia), pp. 668-673, Hefei, China, 2016.
[21] L. Wei, et al., “Study on harmonic marginal pricing in power system” in IEEE PES Innovative Smart Grid Technologies, pp. 1-4, Tianjin, China, 2012.
[22] M. Tavakoli, et al., “CVaR-based energy management scheme for optimal resilience and operational cost in commercial building microgrids” International Journal of Electrical Power & Energy Systems, vol. 100, p.p. 1-9, 2018.
[23] Y.-M. Liu, et al., “Complex blind source separation based harmonic contribution assessment” in 17th International Conference on Harmonics and Quality of Power (ICHQP), pp. 176-180, Belo Horizonte, Brazil, 2016.
[24] M. Lamich, et al., “Nonlinear loads model for harmonics flow prediction, using multivariate regression”. IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4820-4827, 2017.
[25] J. Mazumdar, et al., “Neural network based method for predicting nonlinear load harmonics” IEEE Transactions on Power Electronics, vol. 22, no. 3, pp. 1036-1045, 2007.
[26] H. Mohkami, R. Hooshmand, and A. Khodabakhshian, “Fuzzy optimal placement of capacitors in the presence of nonlinear loads in unbalanced distribution networks using BF-PSO algorithm” Applied Soft Computing, vol. 11, no. 4, pp. 3634-3642, 2011.
[27] S. Ghosh, S.P. Ghoshal, and S. Ghosh, “Optimal sizing and placement of distributed generation in a network system” International Journal of Electrical Power & Energy Systems, vol. 32, no. 8, p.p. 849-856, 2010.
[28] D.J. Carnovale, T.J. Dionise, and T.M. Blooming. “Price and performance considerations for harmonic solutions” in Power Systems World, Power Quality 2003 Conference, Long Beach, California, 2003.