Conceptual Design of Mach-Zehnder Optical Filter based on Two Dimensional Photonic Crystal

Document Type : Original Article

Authors

Faculty of Electrical Engineering, University of shahid beheshti, Tehran, Iran

Abstract

In this paper, an optical bandpass filters based on photonic crystal using asymmetric Mach-Zehnder interferometer is conceptually analyzed and designed. For this purpose, the wavelength parameters such as central wavelength, bandwidth, amplitude sharpening, and passband flattening for a single stage conceptual structure have been selected and realized based on two-dimensional hexagonal photonic crystal lattice. The proposed filter has a high degree of design freedom and by adjusting the structure design parameters, it can be used in the design of the wide and narrow bands optical filters. The 1-dB and 3-dB bandwidths for the initial structure and optical demultiplexer are obtained 12 nm, 25 nm and 4 nm, 8 nm, respectively which represents a 300 percent reduction in bandwidth and sharpening of the filter amplitude.

Keywords


[1].    Martinez, A. Griol, P. Sanchis, and J. Marti, Mach–Zehnder interferometer employing coupled-resonator optical waveguides, Opt. Lett., vol. 28, no. 6, pp. 405–407, Mar. 2003

[2].    M. H. Shin, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, Two-dimensional flat band slow light in photonic crystal waveguides, Optics Express, vol. 16, pp. 6227–6232, 2008

[3].    M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, Photonic-crystal slow-light enhancement of nonlinear phase sensitivity, J. Opt. Soc. Amer. B, Opt. Phys., vol. 19, no. 9, pp. 2052–2059, Sep. 2002

[4].    Y. Liu and L. W. Chen, Tunable photonic-crystal waveguide Mach–Zehnder interferometer achieved by nematic liquid crystal phase modulation, Opt. Express, vol. 12, no. 12, pp. 2616–2624, Jun. 2004

[5].    E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, 2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure, Opt. Express, vol. 12, no. 4, pp. 588–592, Feb. 2004.

[6].    C.K.Madsen and J.H. Zhao: OPTICAL FILTER DESIGN AND ANALYSIS, A SIGNAL PROCESSING APPROACH (John Wiley & Sons, New York, 1999)

[7].    P.E. Green, Fiber Optic Networks, Prentice Hall, New Jersey, 1993.

[8].    Herbert Venghaus,Wavelength Filters in Fibre Optics ,springer 2006

[9].    M. H. Shin, W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi,J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, Two-dimensional photoniccrystal Mach–Zehnder interferometers, Appl. Phys. Lett., vol. 84,no. 4, pp. 460–462, Jan. 2004.
[10]. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Molding the Flow of Light ,Princeton University Press, Princeton, NJ, 1995.
[11]. C. J. Jin, S. Z. Han, X. D. Meng, B. Y. Cheng, and D. Z. Zhang, Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal, J. Appl. Phys.91, 4771–4773 ,2002.
[12]. Q.Gong,X.Hu, PHOTONIC CRYSTAL PRINCIPLE AND APPLICATION, Science Press ,2010.
[13]. T.Liu, Photonic crystal Based Optical Devices,the university of arizona 2005
[14].   سعید سیدطاهری، علیرضا عندلیب، «طراحی واتافتگرهای مبتنی بر بلورهای فوتونی با قابلیت تواناسازی مناسب برای سامانه‌های مخابرات نوری»،مجله مهندسی برق دانشگاه تبریز، جلد47، شماره2،  1396.
[15].   اشکان قنبری، علی صدر، مهران نیکو، « بیشینه سازی ضریب فشردگی و پهنای باند پالسهای نوری با استفاده از چرپ فرکانسی در فیبرهای فوتونیک کریستال»،مجله مهندسی برق دانشگاه تبریز، جلد 43 ، شماره2، 1392.
[16].  ITU-T Rec. G.694.2 Spectral grids for WDM applications 2003.