Electromyogram Signal Compression Using Pre/De-emphasis- Based Smoothing Technique

Document Type : Original Article

Authors

Faculty of Electrical and Robotics Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Today, there is a great tendency to store long-term recordings of electromyogram (EMG) signals; thus, showing the importance and necessity of effective compression of this type of biomedical signals. In this paper, regarding to the relatively rapid variation of EMG instantaneous amplitudes and thus having rather high frequency components, we have proposed a compression approach in which a smooth and reversible version of the input EMG signal is generated to be compressed instead of the original one; thus, improving the compression efficiency. We have used the pre/de-emphasis technique in the Fourier domain to produce a smooth signal from the input EMG signal. The smoothed signal is then simply converted to the corresponding 2D image and finally, compressed by the Wavelet transform and Set Partitioning In Hierarchical Trees (SPIHT) codec. The proposed method is evaluated by two sets of criteria, measuring the compression efficiency (including the PRD and CF measures) and capability of preserving the clinical information (including four spectral parameters). The results show the superiority of the proposed method compared to most of existing approaches.

Keywords


[1]      مرتضی به نام، حسین قاسم پور، «شناسایی صرع براساس بهینه سازی ویژگی‌های ادغامی تبدیل هارتلی با مدل ترکیبی MLP و GA همراه با استراتژی یادگیری ممتیک»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، صفحه 67-51، زمستان 1394.
[2]      سیدعابد حسینی، محمدعلی خلیل زاده، سیدمهرام همام، مهدی آذرنوش، «اآشکارسازی فشار هیجانی به کمک ویژگی‌های غیرخطی و طیف مرتبه بالای سیگنال مغزی»، مجله مهندسی برق دانشگاه تبریز، جلد 39، شماره 2، صفحه 25-14، پاییز 1388.
[3]      P. A. Berger, F. A. O. Nascimento, J. C. Carmo, and A. F. Rocha, “Compression of EMG Signals with Wavelet Transform and Artificial Neural Networks,” Physiological Measurement, vol. 27, pp. 457-465, 2006.
[4]      C. Itiki, S. S Furuie, and R. Merletti, “Compression of high-density EMG signals for trapezius and gastrocnemius muscles,” BioMedical Engineering OnLine, vol.13, no. 25, pp. 1-23, 2014.
[5]      P. A. Berger, F. A. O. Nascimento, A. F. Rocha, and J. L. A. Carvalho, “A new wavelet-based algorithm for compression of EMG signals,” Proceedings of the 29th Annual International Conference of the IEEE EMBS Cité Internationale, Lyon, France August 23-26, 2007.
[6]      M. Mischi, C. Rabotti and M. Cardinale, “Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies,” Proceedings of the IEEE international conference on engineering in medicine and biology society, p. 2338–2341, 2010.
[7]      R. Merletti and P. Parker, Electromyography: engineering and noninvasive applications, Wiley Press, Hoboken, 2004.
[8]      P. Madeleine, A. Samani, M. de Zee, and U. Kersting, “Biomechanical assessments in sports and ergonomics,” Klika V, editor. Theoretical biomechanics, InTech, pp. 335–360, 2011.
[9]      T. Hoshino, T. Suzuki, M. Tomono, M. Shimojo, R. Furusawa, and K. Mabuchi, “Development of a motion support system by using an electromyogram,” Proceedings of IEEE International Conference of Systems and Man Cybernetics, vol. 5, pp. 4432–4437, 2004.
[10]      J. A. Dawley, K. B. Fite, and G. D. Fulk, “EMG control of a bionic knee prosthesis: exploiting muscle co-contractions for improved locomotor function,” Proceedings of the IEEE international conference on rehabilitation robotics, pp. 1-6, 2013.
[11]      C. N. Huang, C. H. Chen, and H. Y. Chung, “Application of facial electromyography in computer mouse access for people with disabilities,” Disability Rehabilitation, vol. 28, no. 4, pp.231-237, 2006.
[12]      M. Murugappan, “Electromyogram signal based human emotion classification using KNN and LDA,” Proceedings of the IEEE international conference on system engineering and technology, pp. 106–110, 2011.
[13]      A. H. Al-Timemy, G. Bugmann, J. Escudero, and N. Outram, ”Classification of finger movements for the dexterous hand prosthesis control with surface electromyography,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 3, pp. 608-618, 2013.
[14]      P. J. Mork and R. H. Westgaard, “Long-term electromyographic activity in upper trapezius and low back muscles of women with moderate physical activity,” Journal of Applied Physiology, vol. 99, pp. 570-578, 2005.
[15]      R. Merletti, D. Farina, and M. Gazzoni, “The linear electrode array: a useful tool with many applications,” Journal of Electromyography Kinesiology, vol. 13, no. 1, pp. 37-47, 2003.
[16]      P. A. Lichter, E. H. Lange, T. H. Riehle, S. M. Anderson, and D. S. Hedin, “Rechargeable wireless EMG sensor for prosthetic control,” Proceedings of the international conference on engineering in medicine and biology society, pp. 5074–5076, 2010.
[17]      E. B. L. Filho, E. A. B. da Silva, M. B. de Carvalho, W. S. S. Júnior, and J. Koiller, “Electrocardiographic signal compression using multiscale recurrent patterns,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 12, pp. 2739-2753, 2005.
[18]      W. C. de Melo, E. B. L. Filho, and W. S. da Silva, “Electromyographic signal compression through image encoders and  preprocessing techniques,” Journal of Communication and Information Systems, vol. 31, no. 1, pp. 188-197, 2016.
[19]      E. Fiorucci, G. Bucci, R. Cattaneo and A. Monaco, “The measurement of surface electromyographic signal in rest position for the correct prescription of eyeglasses,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 2, pp. 419-428, 2012.
[20]      A. B. Carlson and P. B. Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 5th Edition, McGraw Hill, 2009.
[21]      J. F. Norris and D. F. Lovely, “Real-time compression of myoelectric data utilizing adaptive differential pulse code modulation,” Medical and Biological Engineering and Computing, vol. 33, no. 5, pp. 629-635, 1995.
[22]      E. S. G. Carotti, J. C. de Martin, D. Farina, and R. Merletti, “Linear predictive coding of myoelectric signals,” Proceedings IEEE International Conference of Acoustics and Speech Signal Processing, vol. 5, pp.629-632, 2005.
[23]      E. S. G. Carotti, J. C. de Martin, and R. Merletti, D. Farina, “Compression of surface EMG signals with algebraic code excited linear prediction,” Medical Engineering Physics, vol. 29, pp. 253-258, 2007.
[24]      A. P. Guerrero and C. Mailhes, “On the choice of an electromyogram data compression method,” Proceeding of IEEE international conference on engineering in medicine and biology society, vol. 4, pp. 1558-1561, 1997.
[25]      J. A. Norris, K. Englehart, and D. Lovely, “Myoelectric signal compression using zero-trees of wavelet coefficients,” Medical Engineering & Physics, vol. 25, no. 9, pp. 739-746, 2003.
[26]      E. B. L. Filho EBL, E. A. B. da Silva, and M. B. de Carvalho, “On EMG signal compression with recurrent patterns,” IEEE Transactions on Biomedical Engineering. vol. 55, no. 7, pp. 1920-1923, 2008.
[27]      M. V. C. Costa, J. L. A. Carvalho, P. A. Berger, A. Zaghetto, A. F. da Rocha, and F. A. O. Nascimento, “Two-dimensional compression of surface electromyographic signals using column-correlation sorting and image encoders,” Proceedings of the IEEE international conference on engineering in medicine and biology society, pp. 428-431, 2009.
[28]      D. S. Taubman and M. W. Marcellin, JPEG2000: image compression fundamentals. Standards and practice, Kluwer Academic Publishers, Boston, 2002.
[29]      T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits Systems Video Technology, vol. 13, no. 7, pp. 560-576, 2003.
[30]      N. M. M. Rodrigues, E. A. B. da Silva, M. B. de Carvalho, S. M. M. de Faria, and V. M. M. da Silva, “On dictionary adaptation for recurrent pattern image coding,” IEEE Transactions on Image Processing, vol. 17, no. 9, pp. 1640-1653, 2008.
[31]      W. C. Melo, E. B. L. Filho, and W. S. S. Junior, “Electromyographic signal compression based on preprocessing techniques,” Proceedings of the IEEE international conference on engineering in medicine and biology society, pp. 5404–5407, 2012.
[32]      A. K. Jain, Fundamentals of digital image processing, Prentice Hall, Upper Saddle River, 1988.
[33]      W. C. de Melo, E. B. de L. Filho, and W. S. da S. Júnior, “SEMG signal compression based on two‑dimensional techniques,” BioMedical Engineering OnLine, pp. 15-41, 2016.
[34]      M. H. Trabuco, M. V. C. Costa, and F. A. O. Nascimento, “S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation,” BioMedical Engineering OnLine, vol. 13, pp. 1-22, 2014.
[35]      W. A. Pearlman and A. Said, Digital Signal Compression: Principles and Practice, Cambridge University Press, Cambridge, 2011.
[36]      هادی گرایلو، «فشرده‌سازی تصاویر دارای درجه تفکیک مکانی بالا مبتنی بر تخمین زیرباندهای جزئیات در حوزه تبدیل موجک»، مجله بینایی ماشین و پردازش تصویر (JMVIP)، مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 7 تیرماه 1396.
[37]      J. A. Norris, K. Englehart and D F. Lovely, “Steady-state and dynamic myoelectric signal compression using embedded zero-tree wavelets,” in Proceedings of 23rd Annual International Conference of IEEE Engineering in Medicine Biology Society, pp, 1879–1882, 2001.
[38]      H. Broman, G. Bilotto, and C. J. de Luca, “Myoelectric signal conduction velocity and spectral parameters: influence of force and time,” Journal of Applied Physiology, vol. 58, no. 5, pp. 1428-1437, 1985.
[39]      B. Elfvinga, G. N´emetha, I. Arvidssonb, and M. Lamontagne, “Reliability of EMG spectral parameters in repeated measurements of back muscle fatigue,” Journal of Electromyography and Kinesiology, vol. 9, no. 4, pp. 235-243, 1999.
[40]      S. Thongpanja, A. Phinyomark, P. Phukpattaranont and C. Limsakul, “Mean and median frequency of EMG signal to determine muscle force based on time-dependent power spectrum,” Elektronika ir Elektrotechnika, vol. 19, no. 3, pp. 51-56, 2013.
[41]      M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, “Techniques of EMG signal analysis: detection, processing, classification and applications,” Biological Procedures Online, vol. 8, no. 1, pp. 11-35, 2006.
[42]      C. M. Wheidima, B. L. F. Eddie, and S. S. J. Waldir, Electromyographic Signal Compression Through Image Encoders and  Preprocessing Techniques, Journal of Communication and Information Systems, vol. 31, no. 1, pp. 188-197, 2016.
[43]      C. M. Wheidima, B. L. F. Eddie, and S. S. J. Waldir, SEMG signal compression based on two‑dimensional techniques, BioMedical Engineering OnLine, pp. 15-41, 2016.