Power Flow of Unsolvable Power Systems using Combination of Jacobian and Nonsingular Diagonal Matrices

Document Type : Original Article

Authors

1 Faculty of Engineering, Shahrekord University, Shahrekord, Iran

2 Faculty of Engineering, University of Shahrekord, Shahrekord, Iran

Abstract

Based on the determinant of the Jacobian matrix in the power flow (PF) problem, power systems are categorized to well-conditioned, ill-conditioned and unsolvable systems. In this paper, a novel and simple approach based on Newton technique is presented to solve the PF problems in the unsolvable power flow cases in the power systems. The presented method is based on combination of the inverse of Jacobian matrix to a nonsingular diagonal matrix. Application of the proposed method causes to change the zero eigenvalues to new values in their neighborhoods. The application of the presented algorithm in various scale power systems (2-bus, 11-bus, 14-bus and 118-bus) indicates that the proposed formulation decreases the computation time and number of iterations in comparison with benchmark methods.

Keywords


[1]   عباس ربیعی و مرتضی محمدی «پخش بار بهینه احتمالی مقید به پایداری گذرا :رهیافت برنامه‌ریزی تصادفی«، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، بهار 95.
[2]      علی حسامی نقشبندی و هیوا شمس «پخش بار مقید به پایداری سیگنال کوچک با استفاده از الگوریتم ژنتیک «، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، پاییز 96.
[3]      R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. Philadelphia, PA: SIAM, 1994.
[4]      W. F. Tinney and C. E. Hart, “Power flow solution by Newton’s method,” IEEE Trans. Power App. Syst., vol. PAS-86, pp. 1449-1460, Nov. 1967.
[5]      B. Stott, “Review of load-flow calculation methods,” Proc. IEEE, vol. 62, pp. 916–929, Jul. 1974
[6]      J. B. Ward and H. W. Hale, "Digital computer solution of
power-flow problems," AIEE Trans. Power App. and Syst., vol. 75, pp. 398404, June 1956.
[7]      A. Brameller and J. K. Demnead, “Some improved methods for digital network analysis,” Proc. IEE, vol. 109, no. 43), pp. 109-116, 1962.
[8]      S. T. Despotovic, B. S. Babic and V. P. Mastilovic, “A Rapid and Reliable Method for Solving Load Flow Problems,” IEEE Trans., vol. PAS-90, no. 1, pp.123-130, 1971.
[9]      F. Milano, “Continuous Newton's method for power flow analysis,” IEEE Trans. Power Syst., vol. 24, no. 1, pp. 50-57, Feb. 2009.
[10]      T. H. Jung, K. J. Kim and F. L. Alvarado, “A marginal analysis of voltage stability with load variations,” l0th PSCC, Graz, Austria, Aug. 1990.
[11]      I. Dobson and L. Lu, “Computing an optimum direction in control space to avoid saddle node bifurcation and voltage collapse in electric power systems,” IEEE Trans. on Automatic Control, vol. 37, np. 10, pp. 1616-1620, 1992.
[12]      M. M. M. El-Arini, “Decoupled power flow solution method for well-conditioned and ill-conditioned power systems,” Proc. IEE-C, vol. 140, no. 1, pp. 7-10, 1993.
[13]      Y. Chen and C. Shen, “A Jacobian-free Newton-GMRES(m) method with adaptive preconditioner and its application for power flow calculations,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1096–1103, Aug. 2006.
[14]      R.S. Salgado and A. F. Zeitune, “Power flow solutions through tensor methods,” IET Gen. Trans Distr., vol. 3, no. 5, pp. 413-424, 2009.
[15]      Y. S. Zhang and H. D. Chiang, “Fast Newton-FGMRES solver
for large-scale power flow study,” IEEE Trans. Power Syst., 25, (2), pp. 769–776, 2010.
[16]      M. Pirnia, C. Cañizares and K. Bhattacharya, “Revisiting the power flow problem based on a mixed complementarity formulation approach,” IET Gen. Trans. Distr., vol. 7, no.11, pp. 1194-1201, 2013.
[17]      S. Y. Derakhshandeh and R. Pourbagher, “Application of high order Newton-like methods to solve power flow equations,” IET Gen. Trans. Dist., vol. 10, no. 8, pp. 1853-1859, 2016.
[18]      S. Iwamoto, Y. Tamura, “A load flow calculation method for ill conditioned power Systems,” IEEE Trans. Power App. Syst., vol. PAS-100, no. 4, pp. 1736-1743, Apr. 1981.
[19]      S. C. Tripathy, G. D. Prasad, O. P. Malik, and G. S. Hope, “Load flow solutions for ill-conditioned power systems by a Newton-like method,” IEEE Trans. Power App. Syst., vol. PAS-101, pp. 3648-3657, Oct. 1982.
[20]      P. J. Lagace, “Power Flow Methods for Improving Convergence,” IECON 2012–38th Annual Conf. on IEEE Industrial Electronics Society, pp. 1387–1392, 2012.
[21]      R. Pourbagher and S.Y. Derakhshandeh, “Application of High-Order Levenberg-Marquardt method for solving the power flow problem in the ill-conditioned systems,” IET Gen. Trans. Distr., vol. 10, no. 12, pp. 3017-3022, 2016.
[22]      R. Pourbagher and S.Y. Derakhshandeh, “A powerful method for solving the power flow problem in the ill-conditioned systems,” Electrical Power and Energy Systems, vol. 94, no. 1, pp. 88-96, 2018.
[23]       T. J. Overbye, “A power flow measure for unsolvable cases,” IEEE Trans. Power Syst., vol. 9, no. 3, pp. 1359–1365, Aug. 1994.
[24]      T. J. Overbye, “Computation of a practical method to restore power flow solvability,” IEEE Trans. Power Syst., vol. 10, no. 1, pp. 280–287, Feb. 1995.
[25]      A. Pama and G. A Radman, “new approach for estimating voltage collapse point based on quadratic approximation of PV-curves,” Elec. Power Syst. Res.,vol. 79, pp. 653–659, 2009.
[26]      P. J. Lagace, M. H. Vuong and I. Kamwa, “Improving Power
Flow Convergence by Newton–Raphson with a Levenberg Marquardt Method,” IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, Conf., Pittsburgh, PA, pp. 1–6, 2008.
[27]      N. V Acharya and P. S. N Rao, “A new voltage stability index based on the tangent vector of the power flow Jacobian,” Asia: Innovative Smart Grid Technologies, pp. 1-6, 2013.
[28]      X. Yang and X. Zhou, ”Application of asymptotic numerical method with homotopy techniques to power flow problems,” International Journal of Electrical Power & Energy Systems, vol. 57, no. 1, pp. 375–383, May 2014.
[29]      D. Mehta, H. D. Nguyen and K. Turitsyn, “Numerical polynomial homotopy continuation method to locate all the power flow solutions,” IET Gen. Trans. Distr., vol. 10, no. 12, pp. 2972-2980, 2016.
[30]      J. L. Hueso, E. Martínez, and J. R. Torregrosa, “Modified Newton’s method for systems of nonlinear equations with singular Jacobian,” Journal of Computational and Applied Mathematics, vol. 224, no. 1, pp. 77–83, 2009.
[31]      J. Kou, Y. Li and X. Wang, “Efficient continuation Newton-like method for solving systems of non-linear equations,” Applied Mathematics and Computation, vol. 174, no. 2, pp. 846-853, 2006.
[32]      X. Wu, “Note on the improvement of Newton’s method for systems of nonlinear equations,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1476–1479, 2007.
[33]      S. Singh, “A System of Nonlinear Equations with Singular Jacobian,” International Journal of Innovative Research in Science, Engineering and Technology, vol. 2, no. 7, pp. 2650-2653, 2013.
[34]      X. F. Wang, Y. Song and M. Irving, Modern Power Systems Springer Science Business Media, LLC, 2008.
[35]      R. D. Zimmerman, C. E. Murillo-Sanchez and R. J. Thomas, “MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1, pp.12-19, 2010.