A Bilevel Model for Generation Expansion Planning with Contract Pricing of Renewable Energy

Document Type : Original Article

Authors

1 Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

2 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

Abstract

In this paper, a novel framework is presented to solve generation expansion planning problem in the presence of investment incentives. In the proposed model, investment incentive is a guaranteed purchase contract. Generation expansion planning is presented as a bilevel model, where the goal of upper level is maximizing profit of wind unit investor and the low level includes the market clearing optimization problem with maximizing of social welfare powered by independent system operator (ISO). This bilevel problem is transformed into an mathematical programming with equilibrium constraints problem (MPEC) using the KKT conditions. In this paper, the guaranteed contract price and the market price are obtained in the market clearing equations, and by using them and the strategic bidding by wind unit, it is decided on investment.

Keywords


[1]      L. Stankeviciute, P. Criqui, “Energy and climate policies to 2020: the impacts of the European “20/20/20” approach,” International journal of energy sector management, vol. 2, no, 2, pp. 252-273, 2008.
[2]      M. Aien, M. Fotuhi-Firuzabad, M. Rashidinejad, “Probabilistic optimal power flow in correlated hybrid wind–photovoltaic power systems,”  IEEE transactions on smart grid, Vol. 5, no. 1, pp. 130-138, 2014.
[3]      E. Hajipour, M. Bozorg, M. Fotuhi-Firuzabad, “Stochastic capacity expansion planning of remote microgrids with wind farms and energy storage,” IEEE transactions on sustainable energy, Vol. 6, no. 2, 2015.
[4]      Y. Cao, Y. Zhang,  H. Zhang,  X. Shi, V. Terzija, “Probabilistic optimal PV capacity planning for wind farm expansion based on NASA data,”  IEEE transactions on sustainable energy, Vol. 8, no. 3, 2017.
[5]      S. Shenoy, D. Gorinevsky, “Data-driven stochastic pricing and application to electricity market,” IEEE journal of selected topics in signal processing, Vol. 10, no. 6, pp. 1029-1039, 2016.
[6]      A. Galetovic, C. M. Muñoz, and F. A. Wolak, “Capacity payments in a cost-based wholesale electricity market: the case of Chile,” The Electricity journal, vol. 28, no. 10, pp. 80-96, 2013.
[7]      P. M. Sotkiewicz, J. M. Vignolo, “Nodal pricing for distribution networks: efficient pricing for efficiency enhancing DG,” IEEE transactions on power systems, vol. 21, no. 2, pp. 1013-1014, 2006.
[8]      K. Shaloudegi, N. Madinehi, S. H. Hosseinian, H. A. Abyaneh, “A novel policy for locational marginal price calculation in distribution systems based on loss reduction allocation using game theory,” IEEE transactions on power systems, vol. 27, no. 2, pp. 811-820, 2012.
[9]      R. K. Singh, S. K. Goswami, “Optimum allocation of distributed generations based on nodal pricing for profit, loss reduction, and voltage improvement including voltage rise issue,” International journal of electrical power & energy systems, vol. 32, no. 6, pp. 637-644, 2010.
[10]      M. J. Rider, J. M. Lopez-Lezama, J. Contreras, A. Padilha-Feltrin, “Bilevel approach for optimal location and contract pricing of distributed generation in radial distribution systems using mixed-integer linear programming,” IET generation, transmission and distribution, vol. 7, no. 7, pp. 724-734, 2013.
[11]      ح. شایقی و ع. قاسمی، «پیش‌بینی قیمت روزانه برق با شبکه عصبی بهبود یافته مبتنی بر تبدیل موجک و روش آشوبناک جستجوی گرانشی»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 4، صفحه 105-115، زمستان 1394.
[12]      J. M. Lopez-Lezama, A. Padilha-Feltrin, J. Contreras, J. I. Munoz, “Optimal contract pricing of distributed generation in distribution networks,” IEEE transactions on power systems, vol. 26, no. 1, pp. 128-136, 2011.
[13]      S. J. Kazempour, A. J. Conejo, C. Ruiz, “Strategic generation investment using a complementarity approach,” IEEE transactions on power systems, vol. 26, no. 2, pp. 940-948, 2011.
[14]      م. رمضانیان لنگرودی، س. م. میرحسینی مقدم و ب. علیزاده، «استفاده از روش یادگیری رقابتی برای قیمت‌دهی ایتراتژیک شرکت‌های تولید بر اساس LMP در بازار برق»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صفحه 538-549، تابستان 1394.
[15]      A. Sadeghi Mobarakeh, A. Rajabi-Ghahnavieh, H. Haghighat, “A bi-level approach for optimal contract pricing of independent dispatchable DG units in distribution networks,” International transaction on electrical energy systems, vol. 28, no. 8, pp. 1685-1704, 2016.
[16]      م. نوجوان گل‌تپه، ه. سیدی و ب. محمدی ایواتلو، «ارزیابی راهکارهای پیشگیری از ناپایداری ولتاژ با در نظر گرفتن تلفات، عدم قطعیت توربین‌های بادی همبسته به‌هم و تغییرات بار»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحه 305-318، بهار 1396.
[17]      A. Dolatabadi, B. Mohammadi-ivatloo, M. Abapour, and S. Tohidi. “Optimal stochastic design of wind integrated energy hub.” IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2379-2388, 2017.
[18]      A. Dolatabadi and B. Mohammadi-ivatloo, “Stochastic risk-constrained scheduling of smart energy hub in the presence of wind power and demand response,” Applied Thermal Engineering, vol. 123, pp. 40-49, 2017.