Using Graphene for Tunable Scattering Manipulation of Dielectric Cylinder

Document Type : Original Article

Author

Faculty of Electrical and Computer Engineering, University of Shiraz, Shiraz, Iran

Abstract

In this paper, graphene has been designed for tunable scattering manipulation of a dielectric cylinder. The goal is changing scattering properties of a dielectric cylinder to ones of another cylinder with desired radius. For this purpose, scattering coefficients of the covered and target cylinders have been achieved and equated. Required surface impedance of the graphene in order to obtain the considered goal in the frequencies of 3 and 4 THz has been derived. By properly tuning the chemical potencial of the graphene, caused by induced voltage, this goal has controllably been achieved. Total scattering widths of the bare, target and covered cylinders are obtained from numerical simulations and analytical calculations

Keywords


[1]      C. Rizza, A. Ciattoni, E. Spinozzi, and L. Columbo, “Terahertz active spatial filtering through optically tunable hyperbolic matamaterials,” Opt.Lett, vol. 37, no. 16, pp. 3345-3347, Aug. 2012. 
 
 [۲] فرهاد خسروی افوسی، محمدنقی آذرمنش و جواد نوری‌نیا،«به‌کارگیری ساختارهای EBG به‌منظور افزایش پهنای باند ودایرکتیویته آنتن مایکرواستریپ»، مجله مهندسی برق دانشگاه
تبریز، دوره ۴۳ ،شماره ۲ ، صفحه ۱-۸، ۱۳۹۲.
[۳] ایمان مجیدی، حسین همتی و سیدحسن صدیقی، «طراحی آنتنچهارتایی شکافی فشرده با قطبش دایروی برای به‌کارگیری درگیرنده GPS»، مجله مهندسی برق دانشگاه تبریز، دوره ۴۶، شماره۴ ، صفحه ۲۹۹-۳۰۶ ، ۱۳۹۵.
[4]   F.H.L. Koppens, D.E. Chang, and F. Abajo, “Graphene plasmonics: A platform for strong light-matter interactions”, Nano Lett., vol. 11, no. 8, pp. 3370-3377, Jul. 2011.
[5]   R. Fleury and A. Alù, “Cloaking and invisibility: A review,” Forum Electromagn. Res. Methods Appl. Technol. vol.  1, no. 7, pp. 171-202, 2014.
[6]   J.S. H. Diaz and J. P. Carrier, “Graphene–based plasmonic switches at near infrared frequencies,” Opt. Express, vol. 21, no. 13, pp. 15490-15540, Jul 2013.
[7]    A.Vakil and, N. Engheta,“Transformation optics using graphene,” Science, vol. 332, no. 6035, pp. 1291–1294, June 2011.
[8]   R. Thomas, Z. Ikonic, and R. W. Kelsall, “Plasmonic enhanced electro-optic stub modulator on a SOI platform,” Photon. Nanostructures-Funda. Appl.,vol. 9, no. 1, pp. 101–107, February 2011.
[9]   P.-Y. Chen, C. Argyropoulos, and A. Alu, “Terahertz antenna phase shifters using integrally-gated graphene transmission-lines,” IEEE Trans. Antennas Propag., vol. 61, no. 4, pp. 1528–1537, April 2013.
[10] L.A. Falkovsky and C. C. Persheguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Physical Review B, vol. 76, no. 15, pp. 153410, October 2007.
[11]    G. W. Hanson. “Dyadic greens functions for an anisotropic, non-local model of biased graphene,” IEEE Transactions on Antennas and Propagation. vol. 56, no. 3, pp. 747-757, March 2008.
[12]   G. W. Hanson. “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene.” Journal of Applied Physics. vol. 103, no. 6, pp. 064302, March 2008.
[13]    V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte. “Sum rules for the optical and hall conductivity in graphene.” Physical Review B, vol. 75, no. 16, pp. 165407, April 2007.
[14]    C. Balanis  Advanced Engineering Electromagnetics (New York: Wiley) 3rd edn (1989).
[15] S. Vellucci, A. Monti, A. Toscano, F. Bilotti, “Scattering Manipulation and Camouflage of Electrically Small Objects through Metasurfaces,” Phys. Rev. Appl., vol. 7, no. 3, pp. 034032, March 2017.
[16]    P. Y. Chen, J. Soric, Y. Padooru, H. M. Bernety, A. Yakovlev, A. Alu, “Nanostructured graphene metasurface for tunable terahertz cloaking,” New J. Phys. vol. 15, no.12, pp. 123029, December 2013.
[17]    C. F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, New York, United States of America: Wiley-Interscience (1998).
[18]    CST Microwave Studio (2016).