هماهنگی بهینه رله‌های اضافه‌جریان با درنظرگرفتن جریان‌های گذرای ژنراتورها

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق - دانشگاه شهید بهشتی - تهران

2 دانشکده مهندسی برق - دانشگاه شهید بهشتی

چکیده

جریان اتصال‌کوتاه در هر شبکه‌ای شامل جریان‌های حالت ماندگار و حالت گذرا است. در روش متعارف هماهنگی رله‌ها، از مولفه گذرای جریان صرف‌نظر می‌شود و رله‌ها براساس جریان‌های ثابت هماهنگ می‌گردند. مولفه گذرای جریان می‌تواند سبب عمل‌کرد سریع‌تر رله‌ها و درنتیجه به‌وجودآمدن ناهماهنگی بین رله‌های اصلی و پشتیبان شود. در این مقاله روشی جهت هماهنگی رله‌ها با درنظرگرفتن مولفه گذرای جریان اتصال‌کوتاه ارائه می‌شود. جهت مدل‌سازی تأثیر مولفه گذرای جریان اتصال‌کوتاه از مدل دینامیکی رله‌های معکوس زمانی استفاده می‌شود. در این روش به محاسبه TSM و Ip  رله‌ها با رعایت قیود هماهنگی پرداخته می‌شود. نشان داده خواهدشد که با وارد‌کردن Ip به مسئله بهینه‌سازی، تابع هدف کاهش می‌یابد ولی ناهماهنگی بین رله‌ها به‌دلیل وجود مولفه گذرای جریان افزایش می‌یابد. جهت ایجاد هماهنگی بین رله‌ها از الگوریتم بهینه‌سازی ژنتیک بهره گرفته شده‌است. روش پیشنهادی و روش متعارف هماهنگی هم روی شبکه شعاعی و هم شبکه حلقوی پیاده‌سازی می‌شوند.


 

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Coordination of Overcurrent Relays Considering Generators Transient Currents

نویسندگان [English]

  • M. Ghotbi Maleki 1
  • R. Mohammadi 2
  • H. Javadi 2
1 Faculty of Electrical and Computer Engineering, University of Shahid Beheshti, Tehran, Iran
2 Faculty of Electrical and Computer Engineering, University of Shahid Beheshti, Tehran, Iran
چکیده [English]

Short-circuit current in the power networks, consists of steady and transient states. In the conventional relay coordination method, the transient component of short-circuit current is ignored and the relays are coordinated via fixed currents. The transient component of short-circuit currents causes relays operate fast and thus miscoordinations appear between the main and backup pair relays. In this paper, a relay coordination method considering the transient component of short-circuit current is presented. Dynamic model of inverse time overcurrent relay is used to calculate operating time of relays. In the proposed method, both TSM and Ip < /sub> of relays are calculated considering coordination constraints. It is shown that when the Ip < /sub> is entered to the optimization problem, the objective function is reduced but miscoordinations between relays are increased because of the transient component of short-circuit current. Genetic optimization algorithm is used for relays coordination. The proposed coordination method is implemented on a radial and a meshed network, and the results are compared with the conventional method of coordination.

کلیدواژه‌ها [English]

  • directional overcurrent relay
  • distributed generation (DG)
  • inverse time relay’s dynamic model
  • genetic algorithm
  • protection coordination
  • transient currents
[1]      A. J. Urdaneta, H. Restrepo, S. Marquez, and J. Sanchez, “Coordination of directional overcurrent relay timing using linear programming,” IEEE Trans. Power Del., vol. 11, no. 1, pp. 122 – 129, 1996.
[2]      D. Birla, R. P. Maheshwari, and H. O. Gupta, “A new nonlinear directional overcurrent relay coordination technique, and banes and boons of near-end faults based approach,” IEEE Trans. Power Del., vol. 21, no. 3, pp. 1176 - 1182, 2006.
[3]      R. Correa, G. Cardoso Jr., O. C.B. de Araujo, L. Mariotto, “Online coordination of directional overcurrent relays using binary integer programming”, Electr. Power Syst. Res. vol. 127, pp. 118–125, 2015.
[4]      M. N. Alam, B. Das, V. Pant, “An interior point method based protection coordination scheme for directional overcurrent relays in meshed networks”, Int. J. Electr. Power & Energy Syst. vol. 81, pp. 153–164, 2016.
[5]      Z. Moravej, F. Adelnia, F. Abbasi, “Optimal coordination of directional overcurrent relays using NSGA-II”, Electr. Power Syst. Res. vol. 119, pp. 228–236, 2015.
[6]      F. A. Albasri, A. R. Alroomi, and J. H. Talaq, “Optimal coordination of directional overcurrent relays using biogeography-based optimization algorithms,” IEEE Trans. Power Del., vol. 30, no. 4, pp. 1810 - 1820, 2015.
[7]      M. Y. Shih, A. C. Enriquez, T. Hsiao, L. M. T. Trevino, “Enhanced differential evolution algorithm for coordination of directional overcurrent relays”, Electr. Power Syst. Res. vol. 143, pp. 365–375, 2017.
[8]      M. Y. Shih, C. A. C. Salazar, and A. C. Enriquez, “Adaptive directional overcurrent relay coordination using ant colony optimization,” Proc. Inst. Elect. Eng., Gen., Transm. Distrib., vol. 9, no. 14, pp. 2040–2049, 2015.
[9]      S.S. Gokhale, V.S. Kale, “An application of a tent map initiated Chaotic Firefly algorithm for optimal overcurrent relay coordination”, Int. J. Electr. Power & Enery Syst. vol. 78, pp. 336–342, 2016.
[10]      T. Amraee, “Coordination of directional overcurrent relays using seeker algorithm,” IEEE Trans. Power Del., vol. 27, no. 3, pp. 1415 - 1422, 2012.
[11]      M. N. Alam, B. Das, V. Pant, “A comparative study of metaheuristic optimization approaches for directional overcurrent relays coordination”, Electr. Power Syst. Res. vol. 128, pp. 39–52, 2015.
[12]      R. Mohammadi, H. A. Abyaneh, S. S. H. Kamangar, and F. Razavi, “A new genetic algorithm method for optimal coordination of overcurrent and distance relays considering various characteristics for overcurrent relays,” in Proc. Int. Conf. Power & Energy, pp. 569-573, 2008.
[13]      R. Mohammadi, H. A. Abyaneh, S. S. H. Kamangar, and F. Razavi, “Optimal combined overcurrent and distance relays coordination incorporating intelligent overcurrent relays characteristic selection,” IEEE Trans. Power Del., vol. 26, no. 3, pp. 1381 - 1391, 2011.
[14]      D. L. A. Negrao, J. C. M. Vieira, “The Local Fit Method for Coordinating Directional Overcurrent Relays”, IEEE Trans. Power Del. vol. 31, no. 4, pp. 1464-1472, 2016.
[15]      Y. Damchi, J. Sadeh, H. R. Mashhadi, “Optimal coordination of distance and overcurrent relays considering a non-standard tripping characteristic for distance relays”, IET Gen. Transm. Distrib. vol. 10, no. 6 ,pp. 1448–1457, 2016.
[16]      S. S. H. Kamangar; H. A. Abyaneh, R. Mohammadi, and F. Razavi, “A new genetic algorithm method for optimal coordination of overcurrent and earth fault relays in networks with different levels of voltages,” in Proc. Int. Conf. IEEE Bucharest, pp. 1-5, 2009.
[17]      A. S. Noghabi, J. Sadeh, and H. R. Mashhadi, “Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA,” IEEE Trans. Power Del., vol. 24, no. 4, pp. 1857 - 1863, 2009.
[18]      H. Sharifian, H. A. Abyaneh, S. K. Salman, R. Mohammadi, and F. Razavi, “Determination of the minimum break point set using expert system and genetic algorithm,” IEEE Trans. Power Del., vol. 25, no. 3, pp. 1284 - 1295, 2010.
[19]      M. Meskin, A. Domijan, I. Grinberg, “Optimal co-ordination of overcurrent relays in the interconnected power systems using break points”, Electr. Power Syst. Res. vol. 127, pp. 53–63, 2015.
[20]      R. Mohammadi, H. A. Abyaneh, H. M. Rudsari, S. H. Fathi, and H. Rastegar, “Overcurrent relays coordination considering the priority of constraints,” IEEE Trans. Power Del., vol. 26, no. 3, pp. 1927 - 1938, 2011.
[21]      عباس صابری نوقابی، حامد بدرسیمایی، محسن فرشاد، "یک روش احتمالی به‌منظور تنظیم بهینه رله‌های اضافه‌جریان ترکیبی با درنظر گرفتن عدم قطعیت‌ها" ، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1،  صفحه 141-153، بهار 1396.
[22]      رضا قربانی، کاظم مظلومی، "جایابی و تعیین ظرفیت بهینه محدودساز جریان خطا با لحاظ عدم‌قطعیت در توان تولیدی توربین بادی " ، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 4،  صفحه 233-245، زمستان 1395.
[23]      R. Mohammadi, H. A. Abyaneh, F. Razavi, M. Al-Dabbagh, and S. H. H. Sadeghi, “Optimal relays coordination efficient method in interconnected power systems,” Electr. Eng. J., vol. 61, no. 2, pp. 75–83, 2010.
[24]      A. Mahari, and H. Seyedi “An analytic approach for optimal coordination of overcurrent relays,” Proc. Inst. Elect. Eng., Gen., Transm. Distrib., vol. 7, no. 7, pp. 674–680, 2013.
[25]      A. A. Kida, L. A. Gallego, “A high-performance hybrid algorithm to solve the optimal coordination of overcurrent relays in radial distribution networks considering several curve shapes”, Electr. Power Syst. Res. vol. 140, pp. 464–472, 2016.
[26]      C. A. C. Salazar, A. C. Enriquez, S. E. Schaeffer, “Directional overcurrent relay coordination considering non-standardized time curves”, Electr. Power Syst. Res. vol. 122, pp. 42–49, 2015.
[27]      R. Mohammadi,  H. A. Abyaneh, A. Agheli, and H. Rastegar, “Overcurrent relays coordination considering transient behaviour of fault current limiter and distributed generation in distribution power network,” Proc. Inst. Elect. Eng., Gen., Transm. Distrib., vol. 5, no. 9, pp. 903–911, 2011.
[28]      IEEE Std. C37.112: “IEEE standard inverse-time characteristic equations for overcurrent relays”, 1996.
[29]      M. R. Dadash Zadeh, and Z. Zhang, “A new DFT-based current phasor estimation for numerical protective relaying,” IEEE Trans. Power Del., vol. 28, no. 4, pp. 2172 - 2179, 2013.
[30]      V. Farahani, S. H. H. Sadeghi, H. A. Abyaneh, and K. Mazlumi, “An improved reconfiguration method for maximum loss reduction using discrete genetic algorithm,” in Proc. Int. Conf.  Power Eng. and Optim. (PEOCO), pp. 178-183, 2010.