طراحی و بهینه‌سازی گرماگیر در مبدل خورشیدی شامل اینورتر تک فاز تمام پل و مبدل بوست

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه بیرجند

چکیده

در این مقاله، متوسط تلفات توان در یک مبدل افزاینده بوست، در سه حالت هدایتی پیوسته، پیوسته اجباری و ناپیوسته و تلفات متوسط توان مبدل اینورتر نیز با روش کلید زنی مدولاسیون پهنای پالس سینوسی در نرم‌افزار متلب به‌دقت تخمین زده و محاسبه می‌شود. سپس توسط یک روش کلی، معادلات انتقال حرارت بر سه روش همرفت، رسانش و تشعشع در یک گرماگیر با پره‌های موازی خنک شونده توسط سیستم‌های همرفت آزاد و اجباری، بررسی می‌شود و این دو روش باهم مقایسه می‌گردد. به‌منظور افزایش عملکرد حرارتی با تبدیل‌شدن مدل حرارتی به یک مدار هم‌ارز الکتریکی از طریق محاسبه و بهینه‌سازی مقاومت حرارتی گرماگیر تا هوا، تمام پارامترهای هندسی گرماگیر با استفاده از یک الگوریتم تکاملی ازدحام ذرات مقید از بین چندین طراحی مختلف با در نظر گرفتن حجم گرماگیر به‌عنوان قید، تعیین می‌شوند. برای طراحی هر چه مطلوب‌تر سیستم خنک‌کننده و افزایش قابلیت اطمینان اجزا، چیدمان مناسب اجزا توسط یک روش ریاضی و ابتکاری بررسی می‌گردد. در این روش که خصوصیات خاص خود را ازنظر دقت، سازگاری و پایداری دارد، ابتدا توزیع دمایی توسط روش اختلاف محدود روی سطح پایه گرماگیر انجام‌گرفته و سپس دمای نقاط داغ توسط الگوریتم مذکور کاهش می‌یابد. در سیستم خنک‌کنندگی همرفت اجباری نسبت به همرفت طبیعی، دما و بازده مبدل به‌طور متوسط به ترتیب 46 درجه سلسیوس و 0.37 درصد کاهش می‌یابند و حجم سیستم خنک‌کننده همرفت اجباری 3 برابر حجم گرماگیر در همرفت آزاد است.

کلیدواژه‌ها


عنوان مقاله [English]

Design and Optimization of Heat Sink in Solar Converter Containing of H-Bridge Single Phase Inverter and Boost Converter

نویسندگان [English]

  • E. Fahima
  • M. A. Shamsi nejad
University of Birjand, Birjand, Iran
چکیده [English]

In this paper, the average power losses in a nonsynchronous boost converter are carefully estimated and calculated at three continuous, discontinuous and forced continuous conductive mode and average power losses of the H-bridge single phase inverter is estimated by sinusoidal pulse width modulation method. Then by a general approach, thermal model and Heat transfer equations are discussed in a natural convection and forced convection with parallel fins and these two methods are compared together. In order to increase thermal performance, thermal model change to electrical equivalent circuit and heat sink to air thermal resistance optimized, all of geometric parameters determined by a constrained particle swarm evolutionary algorithm among several designs. In order to optimize design of cooling and increase reliability of the components, the suitable arrangement examined by a mathematical and innovative approach. In this method which has its own characteristics in terms of accuracy, compatibility and stability, at first, temperature distributed on heat sink baseplate and then decrease hot spots temperature by optimization algorithm above mentioned. In forced convection compared to free convection cooling system, converter temperature and efficiency decrease respectively 46 Celsius degrees and 0.37 percent and forced convection cooling system volume tripled than free convection.

کلیدواژه‌ها [English]

  • Optimize Design
  • Power electronic converter
  • natural convection
  • Heat sink
  • particle swarm
[1]      C. Gammeter, F. Crismer, J. W. Kolar. (2015), “Weight Optimization of a Cooling System Composed of Fan and Extruded-Fin Heat Sink,” IEEE Transactions on Industry Applications, Vol. 51, No. 1, 2015.
[2]      N. Booplan, A. K. Ramasamy, F. Nagi. (2016), “Electronic Component Heat Distribution Optimization using MATLAB,” International Journal of Computer Aided Mechanical Design and Implementation, Vol. 2, No. 1, pp. 1-8.
[3]      M. Asadi, B. Arezi. (2011), “Thermal Design, Modeling and Simulation of AirForced CoolingHeat Sink for Thyristor Controlled Reactor (TCR)”, IEEE, 2nd Power Electronics, Drive Systems and Technologies Conference.
[4]      D. Christen, M. Stojadinovic, J. Biela. (2016), “Energy Efficient Heat Sink Design: Natural vs. Forced Convection Cooling”, IEEE Transactions on Power Electronics.
[5]      U. Drofenic, A. Stupar, J. W. Kolar. (2011), “Analysis of Theorical Limits of Forced Air cooling using advanced composite Materials with high thermal conductivities,” IEEE Transactions on components, packaging and manufacturing technology, Vol. 1, No. 4, April 2011.
[6]      M. Z. M. Hanafi, F. S. Ismail. (2014), “HeatSink Model and Design Analysis Based on Particle Swarm Optimization,” IEEE Innovative Smart Grid Technologies, Asia (ISGT Asia), 2014.
[7]      K. Deb, P. Jain, N. K. Gupta, H. K. Maji. (2004), “Multiobjective Placement of Electronic Components using Evolutionary Algorithms,” IEEE Transactions on components and packaging technologies, Vol. 27, No. 3, 2004.
[8]      H. Delaram, A. Dastfan, M. Norouzi. (2015), “A numerical study on efficiency improvement of heat transfer for a 3-phase inverter,” Modares Mechanical Engineering, Vol. 15, No. 2, pp. 13-24, 2015 (in Persian).
[9]      R. Nowakowski, N. Tang. (2009), “Efficiency of Synchronous Versus Nonsynchronous Buck converters,” Texas Instrument corporated, Analog Applications Journal, 2009.
[10]      P. Sanjeev, Sh. Jain. (2013), “Analysis of conduction and switching losses in two level inverter for low power applications”, IEEE, Annual India Conference (INDICON).
[11]      K. N. Mude. (2018), “Single phase controlled Rectifiers,” Elsevier inc, 2018.
[12]      N. Rao, D. Chamund. (2014), “Calculating Power Losses in an IGBT Module,” http://www.dynexsemi.com/.
[13]      M. Felczak, B. Wiecek, G. De Mey. (2009), “Optimal placement of electronic devices in forced convectivecooling conditions” Elsevier Ltd, Microelectronics Reliability, Vol 49, Issue 12, December 2009, Pages 1537-1545.
[14]      A. Bouzida, R. Abdelli, M. Ouadah. (2016), “Calculation of IGBT Power Losses and Junction Temperature in Inverter drive,” IEEE, 8th International Conference on Modeling, Identifcation and control (ICMIC), Algeria.
[15]      S. Manictala. (2006), “Switching Power Supplies A to Z,” Elsevier, http://www.books.elsevier.com/.
[16]      M. Rashid. (2014), “ Power Electronics Devices, Circuits and Applications,” 4th ed, 2014.
[17]      http://www.mouser.com/ds/2/149/FGH60N60UFD-889110.pdf/.
[18]      www.thinkisemi.com/pdf/FF60UP30DN.pdf
[19]      18. C. A. Santos, J. A. Spim Jr, A. Garcia. (2000), “Modeling of Solidification in Twin Roll Strip Casting,” Elsevier, Journal of Materials Processing Technology.
[21]      G. D. Mey, M. Fekczak, B. Wiecek. (2015), “The use of fractional calculus for the optimal placement of electronic components on a linear array,” Electronic and Energetics, Vol. 28, No 1, pp. 77-84, 2015.
[22]      G. D. Mey, M. Fekczak, B. Wiecek. (2008), “ Exact solution for optimal placement of electronic components on linear array using analytical thermal wake function,” Electronics Letters, Vol. 44, No. 20, 2008.
[23]      بنائی، محمدرضا؛ فائقی بناب، حسین‌اژدر؛ " ارائه یک مبدل dc-dc جدید بدون ترانسفورماتور با بهره ولتاژ بهبودیافته"، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره3، صفحه 71-59، پاییز 1396.
[24]      پورجمال، یوسف؛ عجمی، علی؛ " یک روش جدید برای جایابی منابع تولید پراکنده در سیستم‌های توزیع با هدف کاهش تلفات و افزایش قابلیت اطمینان"، مجله مهندسی برق دانشگاه تبریز، جلد 42، شماره2، صفحه 75-65، پاییز 1391.