فیلتر اولتراسونیک فزود-فرود بر پایه بلورهای فونونی جامد/سیال دوبعدی

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق - دانشگاه صنعتی سهند

چکیده

در این مقاله، یک ساختار بلور فونونی از نوع جامد/سیال در مقیاس مگاهرتز موردبررسی قرارگرفته است. شبکه مربعی با ساختاری از جنس سرامیک بوده و میله‌هایی که با اتانول پرشده درون شبکه چیده شده‌اند. محاسبات ساختار باند به روش بسط به امواج تخت انجام‌شده است که با روش المان محدود هم منطبق شده تا در ادامه برای محاسبات انتشار امواج و سطح فشار مورداستفاده قرار گیرد. پس از محاسبه ساختار باند، باندهای ممنوعه با پهنای باند قابل‌قبول به‌دست‌آمده است و با ایجاد نقص مناسب و معرفی متیل نانوفلوبوتیل اتر به‌عنوان ماده پرکننده میله‌های نقص‌دار مدهای مناسبی در باند ممنوعه منتشر شدند. سپس با طراحی یک ساختار شبه‌متقارن و ایجاد کاواک‌های منسجم، یک فرکانس مجزا به دست آمد. بنابراین با ترکیب موج‌برهای طراحی‌شده حاصل از چیدمان میله‌های نقص‌دار شده و ساختار شبه‌متقارن طراحی‌شده، یک فیلتر اولتراسونیک از نوع فزود- فرود طراحی و شبیه‌سازی‌شده است. فیلتر طراحی‌شده بازه فرکانس‌های f=1.47MHz تا f=1.51MHz  را از ورودی دریافت کرده و به خروجی منتقل می‌کند و فرکانس  f=1.498MHz به‌عنوان فرکانس فزود و فرود مورداستفاده قرار می‌گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Ultrasonic Add/Drop Filter based on Two-Dimensional Solid/Fluid Phononic Crystals

نویسندگان [English]

  • M. Alinejad
  • A. Bahrami
Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

In this paper, we focus on two-dimensional solid/fluid phononic crystal in megahertz range. The case of Ethanol rods embedded in a ceramic lattice has been computed. The plane wave expansion method is used to calculate the dispersion relations which are in good agreement with the transmitted sound pressure level spectra established by the finite element method. Results show that this structure exhibit some absolute bandgaps with suitable bandwidth. So with the help of adding suitable defects, and by introducing methyl nonafluorobutyl ether as a defect inclusion, perfect modes were obtained among bandgaps region. Also, by designing a quasi-periodic structure and with the help of coherent cavities, a distinct frequency was obtained. So, by combining a row of defect rods as a moderate waveguides and designed quasi-periodic structure, we led to the design of acoustic add/drop filter. The designed filter receives the frequencies range from f=1.47MHz to f=1.51MHz and send them in to one distinct output with high confinement and due to the quasi-periodic structure frequency f=1.498MHz is use as the add-drop frequency.

کلیدواژه‌ها [English]

  • Phononic crystal
  • elastic properties
  • finite element method
  • ultrasonic filter
  • brillouin zone
[1]      سعید سید طاهری و علی­رضا عندلیب، »طراحی واتافتگرهای مبتنی بر بلورهای فوتونی با قابلیت تواناسازی مناسب برای سامانه­های مخابرات نوری«، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، 1396.
[2]      اشکان قنبری، علی صدر و مهران نیکو ، »بیشینه­سازی ضریب فشردگی و پهنای باند پالس­های نوری با استفاده از چرپ فرکانسی در فیبرهای فوتونیک کریستال«، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 2، 1392.
[3]      A. Khelif  and A. Adibi, “Phononic Crystals” Springer, New York. 2016.
[4]      M S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt and A. Adibi, “Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates,” Applied Physics Letters., vol.92, no.22, pp. 221905-3, 2008.
[5]      J A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani and V. Laude, ”Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Applied Physics Letters., vol. 84, no. 22, pp. 4400-4402, 2004.
[6]      Q. Zou, T. Yu, T. Wang, N. Liu, Q. Liao and X. Xu, “Novel 1× N ultrasonic power splitters based on self-imaging effect of phononic crystal waveguide arrays,” Journal of Applied Physics., vol. 119, no. 8, pp. 084509-7, 2016.
[7]      C. Qiu, Z. Liu, J. Mei and J. Shi, “Mode-selecting acoustic filter by using resonant tunneling of two-dimensional double phononic crystals,” Applied Physics Letters., vol. 87, no. 10,pp. 104101-3. 2005.
[8]      Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif and P. A. Deymier, “Tunable filtering and demultiplexing in phononic crystals with hollow cylinders,” Physical Review E., vol. 69, no. 4, pp. 046608-6, 2004.
[9]      A. C. Hladky-Hennion, J. O. Vasseur, S. Degraeve, C. Granger and M. De Billy, ”Acoustic wave localization in one-dimensional Fibonacci phononic structures with mirror symmetry,” Journal of Applied Physics., vol. 113, no. 15, pp. 154901-7, 2013.
[10]      R. Ganesh and S. Gonella, “From modal mixing to tunable functional switches in nonlinear phononic crystals,” Physical review letters., vol. 114, no. 5, pp. 302-307, 2015.
[11]      F. Wehrmann, C. Harizi, H. Herrmann, U. Rust, W. Sohler, and S. Westenhofer, ”Integrated optical, wavelength selective, acoustically tunable 2/spl times/2 switches (add-drop multiplexers) in LiNbO/sub 3,” IEEE Journal of Selected Topics in Quantum Electronics., vol. 2, no. 2, pp. 263-269, 1996.
[12]      Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif and P. A. Deymier,” Tunable filtering and demultiplexing in phononic crystals with hollow cylinders,” Physical Review E., vol. 69(4), pp. 608-614, 2004.
[13]      N. D. Lanzillotti-Kimura, A. Fainstein, B. Jusserand, A. Lemaître, O. Mauguin and L. Largeau,” A periodic thin film filters for acoustic phonons,” Journal of Physics: Conference Series., vol. 92(1), pp. 121-125, 2007.
[14]      B. R. Dogolsara, A. Abdollahi and M. K. Moravvej-Farshi,” Designing Acoustic Filters on 2D Phononic Crystal Platforms,” In The 2th International Conference on Acoustic and Vibration., pp. 26-27, 2012.
[15]      B. Rostami-Dogolsara, M. K. Moravvej-Farshi, and F. Nazari,” Acoustic add-drop filters based on phononic crystal ring resonators,” Physical Review B., vol. 93, no. 1, pp. 1468-1473, 2016.
[16]      M. S. Kushwaha and P. Halevi,” Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders,” Applied Physics Letters., vol. 69(1), pp. 31-33, 1996.
[17]      D. T. Blackstock, “Fundamentals of physical acoustics” Wiley, New Jersey. 2000.
[18]      V. A. Moreno-Gobbi, D. Garcia, J. A. phase Eiras and A. S. Bhalla,” Study by ultrasonic techniques of the diagram of BST ceramic family mainly for high Sr concentrations,” Ferroelectrics., vol. 337(1), pp. 197-206, 2006.
[19]      A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, P. Lambin and L. Dobrzynski,” Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal,” Physical Review B., vol. 65(17), pp. 163-168, 2002.
[20]      V. Rajenderan, N. Palanivelu, P. Palanichamy, T. Jayakumar, B. Raj  and B. K. Chaudhuri,” Ultrasonic characterisation of ferroelectric BaTiO3 doped lead bismuth oxide semiconducting glasses,” Journal of non-crystalline solids., vol. 296(12), pp. 39-49, 2001.
[21]      K. L. Jim, C. W. Leung, S. T. Lau, S. H. Choy and H. L. W. Chan,” Thermal tuning of phononic bandstructure in ferroelectric ceramic/epoxy phononic crystal,” Applied Physics Letters., vol. 94(19), pp. 350-352, 2009.
[22]      W. Wilson, and D. Bradley,” Speed of sound in four primary alcohols as a function of temperature and pressure,” The Journal of the Acoustical Society of America., vol. 36, no. 2, pp. 333-337, 1964.
[23]      M. M. Pineiro, F. Plantier, D. Bessieres, J. L. Legido and J. L. Daridon,” High-pressure speed of sound measurements in methyl nonafluorobutyl ether and ethyl nonafluorobutyl ether,” Fluid phase equilibria., vol. 36, no. 15, pp. 297-302, 2004.
[24]      A. L. Chen, Y. S. Wang, Y. F. Guo and Z. D. Wang,” Band structures of Fibonacci phononic quasicrystals,” Solid State Communications., vol. 145(3), pp. 103-108, 2008.