استراتژی پیشنهاددهی ریزشبکه‌ها در بازارهای انرژی و رزرو روز بعد با در نظر گرفتن عدم‌قطعیت در تولید و مصرف بار الکتریکی

نوع مقاله: علمی-پژوهشی

نویسندگان

1 گروه مهندسی برق - واحد علوم تحقیقات - دانشگاه آزاد اسلامی

2 دانشکده مهندسی برق و کامپیوتر - دانشگاه تبریز

3 دانشکده مهندسی برق - دانشگاه صنعتی شریف

چکیده

ریزشبکه‌ها مجموعه‌های ادغام‌شده از دستگاه‌های الکتریکی هستند که می‌توانند انواع تولیدکنندگان قابل‌پخش و غیرقابل‌پخش، مصرف‌کنندگان و ذخیره‌کننده‌های انرژی را شامل شوند. از طرفی دیگر مدیریت بهینه این دستگاه‌های یکپارچه با توجه به ذات تصادفی تولید تجدیدپذیر و همچنین عدم‌قطعیت در میزان بار مصرفی و قیمت‌های بازارهای الکتریکی مستلزم استفاده از روش‌های برنامه‌ریزی تصادفی است. در این مقاله یک مدل جامع برای استراتژی پیشنهاددهی ریزشبکه‌های تجدیدپذیر در بازار انرژی و رزرو روز بعد ارائه‌شده است که در آن عدم‌قطعیت در میزان تولید توان‌های بادی و خورشیدی و میزان بار مصرفی با به‌کارگیری روش برنامه‌ریزی تصادفی دومرحله‌ای وارد مسئله می‌شود. از روش نمونه‌گیری مکعب لاتین برای تولید سناریوهای توان و مصرف و از روش کاهش سناریو ترکیبی روبه‌عقب و روبه‌جلو سریع برای کاهش سناریوهای تولیدشده استفاده‌شده است. مسئله بهینه‌سازی به‌دست آمده یک مسئله عدد صحیح-مختلط غیرخطی با متغیرهای دودویی فراوان است که با استفاده از ترکیب حل‌کننده‌های Lindiglobal و AlphaECP در گمز بیشینه شده و بهینه‌های جهانی آن به‌دست می‌آیند. معیار «ارزش راه‌حل تصادفی» کارآمدی روش برنامه‌ریزی تصادفی را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Bidding Strategy of Micro-Grids in Day-Ahead Energy and Reserve Markets under Generation and Load Uncertainties

نویسندگان [English]

  • P. Fazlalipour 1
  • B. Mohammadi-ivatloo 2
  • M. Ehsan 3
1 Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
3 Faculty of Electrical Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

Micro-grids are integrated electrical systems, which can include dispatchable and non-dispatchable resources, consumption and battery storages. However, optimal management of these integrated systems requires stochastic programming approaches to consider the random nature of renewable generation and consumption. In this paper, a comprehensive bidding strategy model has been provided for renewable micro-grids to participate in the day-ahead energy and reserve markets. The uncertainties in renewable generation and load consumption have been integrated to the problem by the use of stochastic programming approach. Furthermore, the Latin Hypercube Sampling and Fast Backward/forward scenario reduction approaches have been utilized to generate and reduce the scenarios. A large size mixed integer non-liner problem with a lot of binary variables is the outcome of the optimization problem, which is maximized via combination of AlphaECP and Lindoglobal solvers in GAMS to guarantee the global solutions. The “value of the stochastic solution” shows the efficiency of the stochastic programming approach.

کلیدواژه‌ها [English]

  • bidding strategy
  • micro-grid
  • energy and reserve markets
  • uncertainty
  • scenario generation
  • scenario reduction
[1]         N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgrids,” IEEE power and energy magazine, vol. 5, no. 4, pp. 78-94, 2007.
[2]         D. Pudjianto, G. Strbac, F. Van Oberbeeke, A. Androutsos, Z. Larrabe and J. T. Saraiva, “Investigation of regulatory, commercial, economic and environmental issues in microgrids in Future Power Systems,”, 2005 International Conference on IEEE, pp. 6-pp, 2005.
[3]         Q. Jiang, M. Xue and G. Geng, “Energy management of microgrid in grid-connected and stand-alone modes,”  IEEE transactions on power systems, vol. 28, no. 3, pp. 3380-3389, 2013.
[4]         M. Stadler et al., “Value streams in microgrids: A literature review,” Applied Energy, vol. 162, pp. 980-989, 2016.
[5]         D. T. Nguyen and L. B. Le, “Optimal bidding strategy for microgrids considering renewable energy and building thermal dynamics,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1608-1620, 2014.
[6]         G. Ferruzzi, G. Cervone, L. Delle Monache, G. Graditi and F. Jacobone, “Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production,” Energy, vol. 106, pp. 194-202, 2016.
[7]         L. Shi, Y. Luo and G. Tu, “Bidding strategy of microgrid with consideration of uncertainty for participating in power market,” International Journal of Electrical Power & Energy Systems, vol. 59, pp. 1-13, 2014.
[8]         S. Nojavan, B. Mohammadi-Ivatloo and K. Zare, “Robust optimization based price-taker retailer bidding strategy under pool market price uncertainty,” International Journal ofElectrical Power & Energy Systems, vol. 73, pp. 955-963, 2015.
[9]         L. Fan, J. Wang, R. Jiang and Y. Guan, “Min-max regret bidding strategy for thermal generator considering price uncertainty,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2169-2179, 2014.
[10]       B. Vatani, S. Mohajeryami, S. Dehghan and N. Amjady, “Self-scheduling of generation companies via stochastic optimization considering uncertainty of units,” in 2016 Power and Energy Society General Meeting (PESGM), pp. 1-5, IEEE, 2016.
[11]       B. Vatani, N. Amjady and H. Zareipour, “Stochastic self-scheduling of generation companies in day-ahead multi-auction electricity markets considering uncertainty of units and electricity market prices,” IETGeneration, Transmission & Distribution, vol. 7, no. 7, pp. 735-744, 2013.
[12]       N. Yu and B. Foggo, “Stochastic valuation of energy storage in wholesale power markets,” Energy Economics, vol. 64, pp. 177-185, 2017.
[13]       I. Gomes, H. Pousinho, R. Melício and V. Mendes, “Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market,” Energy, vol. 124, pp. 310-320, 2017.
[14]       G. Liu, Y. Xu and K. Tomsovic, “Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 227-237, 2016.
[15]       J. Wang et al., “Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products,” Applied Energy, vol. 205, pp. 294-303, 2017.
[16]       E. Mashhour and S. M. Moghaddas-Tafreshi, “Bidding strategy of virtual power plant for participating in energy and spinning reserve markets—Part I: Problem formulation,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 949-956, 2011.
[17]       T. Li, M. Shahidehpour and Z. Li, “Risk-constrained bidding strategy with stochastic unit commitment,” IEEE Transactions on Power Systems,vol. 22, no. 1, pp. 449-458, 2007.
[18]       T. Chung, S. Zhang, K. Wong, C. Yu and C. Chung, “Strategic forward contracting in electricity markets: modelling and analysis by equilibrium method,” IEE Proceedings-Generation, Transmission and Distribution,vol. 151, no. 2, pp. 141-149, 2004.
[19]       E. J. Anderson and A. B. Philpott, “Using supply functions for offering generation into an electricity market,” Operations Research,vol. 50, no. 3, pp. 477-489, 2002.
[20]       F. Bolle, “Supply function equilibria and the danger of tacit collusion: the case of spot markets for electricity,” Energy economics,vol. 14, no. 2, pp. 94-101, 1992.
[21]       T. Li and M. Shahidehpour, “Strategic bidding of transmission-constrained GENCOs with incomplete information,” IEEE Transactions on power Systems,vol. 20, no. 1, pp. 437-447, 2005.
[22] معصومه جوتدی، سید مازیار میرحسینی مقدم و موسی مرزبند، «مدیریت بهینه انرژی ریز شبکه‌ها در بازار خرده‌فروشی بر پایه روش تئوری بازی غیرهمکارانه با در نظر گرفتن عدم قطعیت،» مجله مهندسی برق دانشگاه تبریز, جلد ۴۶، شماره 1، صفحات ۶۴-۷۴, ۱۳۹۵.
[23]       I. Narimani, S. R. Goldani and I. Birjand, “The Stochastic Bidding Strategy of Micro grid for Participation in Energy and Ancillary Services,” Bulletin de la Société Royale des Sciences de Liège,vol. 85, pp. 123-139, 2016.
[24]       T. Niknam, R. Azizipanah-Abarghooee and M. R. Narimani, “An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation,” Applied Energy,vol. 99, pp. 455-470, 2012.
[25]       T. Niknam, F. Golestaneh and A. Malekpour, “Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm,” Energy,vol. 43, no. 1, pp. 427-437, 2012.
[26]       A. Baziar and A. Kavousi-Fard, “Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices, ” Renewable Energy,vol. 59, pp. 158-166, 2013.
[27]       S. Mohammadi, S. Soleymani and B. Mozafari, “Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices,” International Journal of Electrical Power & Energy Systems,vol. 54, pp. 525-535, 2014.
[28]       C. A. C. Coello, G. B. Lamont and D. A. Van Veldhuizen, Evolutionary algorithms for solving multi-objective problems. Springer, 2007.
[29]       D. G. Maringer, Portfolio management with heuristic optimization. Springer Science & Business Media, 2006.
[30]       M.-H. Lin, J.-F. Tsai and C.-S. Yu, “A review of deterministic optimization methods in engineering and management,” Mathematical Problems in Engineering,vol. 2012, 2012.
[31]       H. T. Nguyen and L. B. Le, “Optimal energy management for building microgrid with constrained renewable energy utilization,” in Smart Grid Communications (SmartGridComm),2014 IEEE International Conference on, pp. 133-138, IEEE, 2016.
[32]       M. Wang and H. Gooi, “Effect of uncertainty on optimization of microgrids,” in IPEC,2010 Conference Proceedings, pp. 711-716, IEEE, 2010.
[33] سهیل کعبه پهنه کلانی و مرتضی رحیمیان، «مدیریت انرژی نیروگاه مجازی بر پایه بهینه‌سازی مقاوم با پایش پیشامدهای ریز شبکه: مطالعه موردی خروج تکی خط،» مجله مهندسی برق دانشگاه تبریز,  جلد ۴۷، شماره 1، صفحات ۲۵۰-۲۶۱, ۱۳۹۶.
 [34]      W. Su, J. Wang and J. Roh, “Stochastic energy scheduling in microgrids with intermittent renewable energy resources,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1876-1883, 2014.
[35]       A. J. Conejo, M. Carrión and J. M. Morales, Decision making under uncertainty in electricity markets. Springer, 2010.
[36]       S. Talari, M. Yazdaninejad and M.-R. Haghifam, “Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads,” IET Generation, Transmission & Distribution, vol. 9, no. 12, pp. 1498-1509, 2015.
[37]       J. C. Helton and F. J. Davis, “Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems,” Reliability Engineering & System Safety,vol. 81, no. 1, pp. 23-69, 2003.
[38]       R. L. Iman, Latin hypercube sampling. Wiley Online Library, 2008.
[39]       M. Alipour, B. Mohammadi-Ivatloo and K. Zare, “Stochastic scheduling of renewable and CHP-based microgrids,” IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp. 1049-1058, 2015.
[40]       B. McCarl et al., “McCarl GAMS User Guide 24.6,” GAMS Development Corporation: Washington, DC, USA, 2015.
[41]       B. Ji, X. Yuan, Z. Chen and H. Tian, “Improved gravitational search algorithm for unit commitment considering uncertainty of wind power,” Energy,vol. 67, pp. 52-62, 2014.
[42]       H. Wu, M. Shahidehpour, A. Alabdulwahab and A. Abusorrah, "Thermal generation flexibility with ramping costs and hourly demand response in stochastic security-constrained scheduling of variable energy sources,” IEEE Transactions on Power Systems,vol. 30, no. 6, pp. 2955-2964, 2015.