ارائه روشی برای بخش‌بندی پویای پایگاه مشتریان در سیستم هوش تجاری تطبیق‌پذیر

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه آزاد قزوین

2 دانشکده مهندسی و علوم کامپیوتر - دانشگاه شهید بهشتی

3 دانشکده علوم‌اجتماعی و اقتصادی - دانشگاه الزهرا

چکیده

رکن اصلی هر سیستم هوشمند، توانایی آن در تطبیق با تغییرات محیطی است، بااین‌حال، توجه کافی به مسئله تطبیق‌پذیری در این سیستم‌ها نشده است. از این‌رو، هدف این مقاله ارائه روشی در سیستم هوش‌تجاری تطبیق‌پذیر است که به‌صورت پویا به بخش‌بندی مشتریان پرداخته و با نظارت بر رفتار خرید و همچنین تحلیل تازگی، تکرار و حجم پولی خرید هر یک از مشتریان، این بخش‌بندی را به‌روزرسانی می‌کند. در این پژوهش، روش‌های داده‌کاوی روی پیمانه تطبیق‌پذیری سیستم هوش تجاری تطبیق‌پذیر اعمال شده است تا بدین ترتیب مشتریان فعلی سازمان دسته‌بندی شده و در گذر زمان و با یادگیری از محیط، این دسته‌بندی بهبود یابد تا بتوان خدمات سفارشی‌شده به مشتریان ارائه داد این روش می‌تواند در کمتر از 0.5 ثانیه خوشه‌بندی اولیه را با توجه به تغییرات محیطی اصلاح کرده و از زمان‌های طولانی اجرای الگوریتم‌های خوشه‌بندی مرسوم (تقریباً در 22 درصد موارد) بکاهد. روش پیشنهادی با در نظرگرفتن بخش‌های مختلف مشتریان، مقادیر فعلی RFM آن‌ها و تغییراتی که با تکرار خرید در این مقادیر ایجاد می‌شود، خوشه‌بندی بهتر و جامع‌تری از مشتریان سازمان به دست می‌دهد که می‌تواند در بهبود عملکرد سیستم هوش تجاری تطبیق‌پذیر مفید واقع شود.

کلیدواژه‌ها


عنوان مقاله [English]

A Method for Dynamic Segmentation of Customer Base in an Adaptive Business Intelligence System

نویسندگان [English]

  • G. Ghanbaripanah 1
  • E. Nazemi 2
  • S. Rajaee Harandi 3
1 - Faculty of Electrical, Computer and IT Engineering, Islamic Azad University of Qazvin, Qazvin, Iran
2 Faculty of Science & Computer Eng., Shahid Beheshti University, Tehran, Iran
3 Faculty of Social Science and Economics, Alzahra University, Tehran, Iran
چکیده [English]

The core of every intelligent system is its ability to adapt to environmental changes, but there is not enough attention to the compatibility issue in these systems. Hence, the aim of this study is to provide a method in adaptive business intelligence system that dynamically segment customers and update this segmentation by monitoring purchasing behavior and analysis of "Recency", "Frequency" and "Monetary" of each one of them. In this research, data mining techniques have been applied on the adaptive modulus of the adaptive business intelligence system so that the current clients of the organization are classified and over time and with learning from the environment, this classification is improved to provide customized services to customers. This method can modify initial clustering with respect to environmental changes in less than 0.5 seconds and reduce the number of execution of conventional clustering algorithms (Approximately 22% of cases). The proposed method, considering different customer segments, their current RFM values and changes made by repeating purchases at these values, provides a better and more comprehensive clustering of the organization's customers that can be useful in improving the performance of an adaptive business intelligent system.

کلیدواژه‌ها [English]

  • Business Intelligence (BI)
  • Adaptive Business Intelligence
  • Decision Making
  • Self-adaptivity
  • Data Mining
[1]   J. Nenortaitė & R. Butleris. “Improving business rules management through the application of adaptive business intelligence technique.” Information Technology and Control, Vol. 38, No. 1.‌ 2009.
[2]   Muntean, M., Bologa, A. R., Bologa, R., & Florea, A. “The use of multidimensional models to increase the efficiency of management support systems. IJM3AS8(5), 1334-1344.‌ 2011.
[3]   C. M. Olszak, E. Ziemba & A. Koohang. Business Intelligence Systems in the Holistic Infrastructure Development Supporting Decision-Making in Organisations. Interdisciplinary Journal of Information, Knowledge & Management, Vol. 1.‌ 2006.
[4]   Z. Michalewicz, M. Schmidt, M.  Michalewicz & C. Chiriac. Adaptive business intelligence. Springer Science & Business Media.‌ 2006.
[5]   T. H. Davenport & J. G. Harris. The architecture of business intelligence”. Competing on analytics: The new science of winning.‌ 2007. [Online], October, 2012 (http://www.studymode.com/essays/The-Architecture-Of-Business-Intelligence-1182020.html).
[6]   W. Bonney. “Applicability of business intelligence in electronic health record.” Procedia-Social and Behavioral Sciences, No. 73, pp. 257-262.‌ 2013.
[7]   T. Bäck. Adaptive business intelligence based on evolution strategies: some application examples of self-adaptive software. Information Sciences, Vol. 148, No. 1, pp. 113-121. 2002.‌
[8]   Kh. Sumaiya and D. R. Kalbande. Adaptive Business Intelligence model for Cross Functional Integration for Manufacturing Industry. International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS), Proceedings published in International Journal of Computer Applications (IJCA). pp. 7-11. 2012.
[9]   Z. Michalewicz, M. Schmidt, M. Michalewicz & C. Chiriac. “Adaptive business intelligence: three case studies.” Evolutionary computation in dynamic and uncertain environments, pp. 179-196.‌ 2007.
[10]    R. S. Wu & P. H. Chou. Customer segmentation of multiple category data in e-commerce using a soft-clustering approach. Electronic Commerce Research and Applications, Vol. 1, No. 3, pp. 331-341.‌ 2011.
[11]  سیامک عبداله زاده، محمدعلی بالافر و لیلی محمدخانی. استفاده از خوشه‌بندی و مدل مارکوف جهت پیش‌بینی درخواست آی کاربر در وب. مجله  مهندسی برق دانشگاه تبریز، جلد 45، شماره 3، پاییز 1394.
[12]    C. H. Cheng, & Y. S. Chen. “Classifying the segmentation of customer value via RFM model and RS theory”. Expert systems with applications, Vol. 36, No. 3, PP. 4176-4184.‌ 2009.
[13]    Liang, Y. H. “Integration of data mining technologies to analyze customer value for the automotive maintenance industry”. Expert systems with Applications, Vol. 37, No. 12, pp. 7489-7496.‌  2010
[14]    M. Böttcher, M. D. Spott, D. Nauck & R. Kruse. “Mining changing customer segments in dynamic markets.” Expert systems with ApplicationsVol. 36, No. 1, pp. 155-164.‌ 2009.
[15]    F. D. Macías-Escrivá, R. Haber, R. Del Toro & V. Hernandez. “Self-adaptive systems: A survey of current approaches, research challenges and applications.” Expert Systems with ApplicationsVol. 40, No. 18, pp. 7267-7279.‌ 2013.
[16]    C. M. Olszak & E. Ziemba. “Approach to building and implementing business intelligence systems.” Interdisciplinary Journal of Information, Knowledge & Management, p. 2.‌ 2007.
[17]    J. M. Rubio & B. Crawford. “An approach towards the integration of Adaptive Business Intelligent and Constraint Programming.” In Information Processing (ISIP), International Symposiums on (pp. 364-369). IEEE.‌2008
[18]    G. R. Gangadharan & S. N. Swami. “Business intelligence systems: design and implementation strategies.” In Information Technology Interfaces, 2004. 26th International Conference on (pp. 139-144). IEEE.‌
[19]    L. Van Dyk & P. Conradie. “Creating business intelligence from course management systems.” Campus-Wide Information Systems, Vol. 24, No. 2, pp. 120-133.‌ 2007.
[20]    H. Cheng, Y. C. Lu & C. Sheu. An ontology-based business intelligence application in a financial knowledge management”, system. Expert Systems with ApplicationsVol. 36, No. 2, pp. 3614-3622.‌ 2009.
[21]         مجید محمدپور و حمید پروین. لگوریتم ژنتیک آشوب‌گونه مبتنی بر حافظه و خوشه‌بندی برای حل مسائل بهینه‌سازی پویا. مجله  مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، پاییز 1396.      
[22]    Z. K. Görgülü & S. Pickl. “Adaptive Business Intelligence: The Integration of Data Mining and Systems Engineering into an Advanced Decision Support as an Integral Part of the Business Strategy.” In Business Intelligence and Performance Management (pp. 43-58). Springer London.‌ 2013.
[23]  سمیرا خدابنده‌لو، محمود زیوری رحمان. ارائه رویکرد جدید بخش‌بندی مشریا براساس تغییر رفتار خرید آن‌هادر طول زمان در حوزه کسب‌وکار الکترونیک. مجله مدیریت فناوری اطلاعات، دوره 9، شماره 2، صص 277-300. تابستان 1396.
[24]    A. Singh & G. W. Rumantir. “Two-tiered clustering classification experiments for market segmentation of EFTPOS retailers.” Australasian Journal of Information Systems, Vol. 19.‌ 2015.
[25]    D. Birant. Data Mining Using RFM Analysis. In Knowledge-oriented applications in data mining. InTech.‌ 2011.
[26]    J. O. Onyuna. “Data Mining Using FRAT-RFM Analysis Approach For Customer Segmentation And Profiling: Case Study Co-operative Bank Of Kenya.‌ 2017.
[27]    A. Parvaneh, M. Tarokh & H. Abbasimehr. “Combining data mining and group decision making in retailer segmentation based on LRFMP variables”. International Journal of Industrial Engineering & Production Research, Vol. 25, No. 3, pp. 197-206.‌ 2014.
[28]  Beheshtian-Ardakani, A., Fathian, M., & Gholamian, M. “A novel model for product bundling and direct marketing in e-commerce based on market segmentation”. Decision Science Letters,Vol. 7, No.1, pp. 39-54.‌ 2018
[29]    M. Khajvand, K. Zolfaghar, S. Ashoori & S. Alizadeh. “Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study”. Procedia Computer Science, Vol. 3, pp. 57-63.‌ 2011.
[30]    S. Khan, & D. R. Kalbande (2013). “Adaptive Business Intelligence model for Cross Functional Integration for Manufacturing Industry.” International Journal of Computer Applications, Vol. 2013, pp. 7-11.‌ 2013.
[31]    J. Xiao, L.  Xie, C. He & X. Jiang. “Dynamic classifier ensemble model for customer classification with imbalanced class distribution.” Expert Systems with Applications, Vol. 39, No. 3, pp. 3668-3675.‌ 2012.
[32]    H. M. Cannon & A. Yaprak. “A dynamic framework for understanding cross-national segmentation”. International Marketing Review, Vol. 28, No. 3, pp. 229-243.‌ 2011.
[33]    D. Arthur & S. Vassilvitskii. “k-means++: The advantages of careful seeding.” In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp. 1027-1035). Society for Industrial and Applied Mathematics.2007, January.
[34]    H. Jopia. “R Package 'smbinning': Optimal Binning for Scoring Modeling”. Daily news about using open source R for big data analysis, predictive modeling, data science and visualization. [Online], March 24, 2015 (http://blog.revolutionanalytics.com/2015/03/r-package-smbinning-optimal-binning-for-scoring-modeling.html).
[35]    D. D. Nimbalkar & P. Shah. “Data mining using RFM Analysis.” International Journal of Scientific & Engineering Research (IJSRE), Vol. 4, No. 12, pp. 940-943.‌ 2013.
[36]    S. M. S. Hosseini, A. Maleki & M. R. Gholamian. “Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty.” Expert Systems with Applications, Vol. 37, No. 7, pp. 5259-5264.‌ 2010.
[37]    R. Gove. Using the elbow method to determine the optimal number of clusters for k-means clustering. Robert Gove’s Block. [Online], December 3, 2015 (https://bl.ocks.org/rpgove/0060ff3b656618e9136b ).
[38]    Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A., & Charrad, M. M. Package ‘NbClust’. J. Stat. Soft, 61, 1-36.‌ 2014.
[39]    Klonimus. Duncan's new multiple range test. Wikipedia. [Online], August, 2005 (https://en.wikipedia.org/wiki/Duncan%27s_new_multiple_range_test).
[40]    S. Chakraborty, N. K. Nagwani & L. Dey. “Performance comparison of incremental k-means and incremental dbscan algorithms”. 2014. arXiv preprint arXiv:1406.4751.‌
[41]    S. Chakraborty & N. K. Nagwani. “Analysis and study of incremental k-means clustering algorithm”. High performance architecture and grid computing, pp. 338-341.‌ 2011.