[1] R. A. Nzekwa, R. Rouvoy, and L. Seinturier, “Modelling feedback control loops for self-adaptive systems”, Electronic Communications of the EASST, vol. 28, no. 2, pp. 106-121, 2010.
[2] S. Chaudhuri and V. Narasayya, “Self-tuning database systems: a decade of progress”, in Proceedings of the 33rd international conference on Very large data bases, pp. 3-14, 2007.
[3] E. Hewitt, Cassandra: the definitive guide, O'Reilly Media, 2010.
[4] M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu, “NoSE: Schema design for NoSQL applications”, in Data Engineering (ICDE), 2016 IEEE 32nd International Conference on, pp. 181-192. 2016
[5] D. Bermbach, S. Müller, J. Eberhardt, and S. Tai, “Informed Schema Design for Column Store-Based Database Services”, in Service-Oriented Computing and Applications (SOCA), IEEE 8th International Conference on, pp. 163-172, 2015.
[6] M. Boussahoua, O. Boussaid, and F. Bentayeb, “Logical Schema for Data Warehouse on Column-Oriented NoSQL Databases”, in International Conference on Database and Expert Systems Applications, pp. 247-256, 2017.
[7] A. Chebotko, A. Kashlev, and S. Lu, “A big data modeling methodology for Apache Cassandra”, in Big Data (BigData Congress) 2015 IEEE International Congress on , pp. 238-245,2015.
[8] C. de Lima and R. dos Santos Mello, “A workload-driven logical design approach for NoSQL document databases”, in Proceedings of the 17th International Conference on Information Integration and Web-based Applications & Services, p. 73-79, 2015.
[9] M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu, “NoSE: Schema design for NoSQL applications”, IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 10,2017.
[10] T. Vajk, L. Deák, K. Fekete, and G. Mezei, “Automatic nosql schema development: A case study”, in Artificial Intelligence and Applications, pp. 656-663, 2013.
[11] T. Vajk, P. Feher, K. Fekete, and H. Charaf, “Denormalizing data into schema-free databases”, in Cognitive Infocommunications (CogInfoCom), 2013 IEEE 4th International Conference on, pp. 747-752: IEEE 2013.
[12] F. Yang, D. Milosevic, and J. Cao, “Optimising column family for OLAP queries in HBase”, International Journal of Big Data Intelligence,vol. 4, no. 1, pp. 23-35, 2017.
[13] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley, “DB2 advisor: An optimizer smart enough to recommend its own indexes”, in Data Engineering, 2000. Proceedings. 16th International Conference on, pp. 101-110: IEEE 2000.
[14] D. C. Zilio, J. Roa, S. Lightstone, G, Lohman, A. Storm, and S. Fadden, “DB2 design advisor: integrated automatic physical database design”, in Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pp. 1087-1097: VLDB Endowment 2004.
[15] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin, “Automatic SQL tuning in Oracle 10g”, in Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, pp. 1098-1109: VLDB Endowment 2004.
[16] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and M. Syamala, “Database tuning advisor for Microsoft SQL Server 2005: demo”, in Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pp. 930-932: ACM 2005.
[17] N. Bruno and S. Chaudhuri, “An online approach to physical design tuning”, in Data Engineering, ICDE 2007. IEEE23rd International Conference on, pp. 826-835: IEEE 2007.
[18] M. Holze and N. Ritter, “Towards workload shift detection and prediction for autonomic databases”, in Proceedings of the ACM first Ph. D. workshop in CIKM, pp. 109-116: ACM 2007.
[19] M. Holze and N. Ritter, “Autonomic databases: Detection of workload shifts with n-gram-models”, in East European Conference on Advances in Databases and Information Systems, pp. 127-142: Springer, Berlin, Heidelberg 2008.
[20] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis, “Colt: continuous on-line tuning”, in Proceedings of the 2006 ACMSIGMOD international conference on Management of data, pp. 793-795: ACM 2006.
[21] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis, “On-line index selection for shifting workloads”, in Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering Workshop, pp. 459-468: IEEE Computer Society, 2007.
[22] محیا ارومیه و نگین دانشپور، «مدلی سه لایه در طراحی سطح منطقی پایگاه داده تحلیلی»، مجله مهندسی برق، دانشگاه تبریز، جلد 47، شماره 2، صفحات 371-380، 1396.
[23] پروانه شایق بروجی و نگین دانشپور، « انتخاب دید جهت ذخیرهسازی دید در پایگاه داده تحلیلی با استفاده از الگوریتم فرهنگی ترکیبی»، مجله مهندسی برق، دانشگاه تبریز، جلد 46، شماره 2، صفحات 97-108، 1395.
[24] A. Pavlo et al., “Self-Driving Database Management Systems”, in CIDR 2017, Conference on Innovative Data Systems Research, January 8-11, Chaminade, CA, 2017.
[25] R. Schroeder and R. d. S. Mello, “Improving query performance on XML documents: a workload-driven design approach”, in Proceedings of the eighth ACM symposium on Document engineering, pp. 177-186: ACM 2008.
[26] P. S. Yu, M.-S. Chen, H.-U. Heiss, and S. Lee, “On workload characterization of relational database environments”, IEEE Transactions on Software Engineering,vol. 18, no. 4, pp. 347-355, 1992.
[27] S. Elnaffar, P. Martin, B. Schiefer, and S. Lightstone, “Is it DSS or OLTP: automatically identifying DBMS workloads”, Journal of Intelligent Information Systems,vol. 30, no. 3, pp. 249-271, 2008.
[28] S. Elnaffar and P. Martin, “The Psychic–Skeptic Prediction framework for effective monitoring of DBMS workloads”, Data & Knowledge Engineering,vol. 68, no. 4, pp. 393-414, 2009.
[29] Z. Zewdu, M. K. Denko, and M. Libsie, “Workload characterization of autonomic dbmss using statistical and data mining techniques”, in Advanced Information Networking and Applications Workshops, WAINA'09. International Conference on, pp. 244-249: IEEE 2009.
[30] M. Holze and N. Ritter, “Autonomic Databases: Detection of Workload Shifts with n-Gram-Models”, In East European Conference on Advances in Databases and Information Systems (pp. 127-142). Springer, Berlin, Heidelberg, 2008.
[31] Q. Yao, A. An, and X. Huang, “Finding and analyzing database user sessions”, In International Conference on Database Systems for Advanced Applications (pp. 851-862). Springer, Berlin, Heidelberg, 2005.
[32] M. Abdul, A. M. Muhammad, N. Mustapha, S. Muhammad, and N. Ahmad, “Database workload management through CBR and fuzzy based characterization”, Applied Soft Computing, vol. 22, pp. 605-621, 2014.
[33] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues, methodological variations, and system approaches”, AI communications, vol. 7, no. 1, pp. 39-59, 1994.
[34] F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone, “Database design for NoSQL systems”, in International Conference on Conceptual Modeling, pp. 223-231: Springer 2014.
[35] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing—degrees, models, and applications”, ACM Computing Surveys (CSUR),vol. 40, no. 3, pp. 191-213, 2008.
[36] W. Karwowski, International encyclopedia of ergonomics and human factors, Second Edition ed. Crc Press, 2006.
[37] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.
[38] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining. Boston: Pearson Addison Wesley, 2005.
[39] C. Ordonez and E. Omiecinski, “FREM: fast and robust EM clustering for large data sets”, in Proceedings of the eleventh international conference on Information and knowledge management, pp. 590-599: ACM 2002.
[40] L. O'callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani, “Streaming-data algorithms for high-quality clustering, in Data Engineering”, Proceedings 18th International Conference on, pp.685-694, 2002.
[41] D. Jurafsky and J. H. Martin, Speech and language processing. Pearson London, 2014.