ارائه‌ روشی ترکیبی مبتنی بر رویکرد کنترلی پیش‌بین مدل به‌منظور کنترل طبقه یکسوساز ترانسفورماتور الکترونیک قدرت

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق - دانشگاه علم و صنعت ایران

چکیده

در این مقاله به بررسی و ارائه روشی کنترلی برای طبقه ورودی ترانسفورماتور الکترونیک قدرت پرداخته می‏شود. ساختار متداول ترانسفورماتور فرکانس پایین با هسته آهنی، دارای معایبی از قبیل عدم کنترل‏پذیری ولتاژ و جریان، حساسیت زیاد به هارمونیک، کیفیت پایین ولتاژ در هنگام اشباع و ... است. ترانسفورماتور الکترونیک قدرت از چندین طبقه مبدل الکترونیک قدرت تشکیل شده و از­آن­جایی که در پژوهش حاضر، استفاده از آن به عنوان جایگزینی برای منبع تغذیه موجود در کاربرد قطارهای برقی مد نظر بوده است؛ به­صورت کاهنده در نظر گرفته شده و خروجی آن به صورت ولتاژ DC‏ است. بنابراین، ساختار مورد مطالعه از دو طبقه یکسوساز ورودی و DC-DC کاهنده تشکیل شده که به­ترتیب وظیفه یکسوسازی ولتاژ متناوب ورودی و کاهش سطح ولتاژ یکسوشده را بر عهده دارند. در این مقاله، روشی ترکیبی مبتنی بر رویکرد پیش‏بین مدل به­منظور متعادل­سازی ولتاژ خازن­های طبقه یکسوساز و هم­چنین، کنترل ضریب قدرت ورودی ارائه می­شود. مزیت روش پیشنهادی نسبت به دیگر روش‏های موجود، سادگی الگوریتم، کاهش قابل توجه حجم محاسبات نسبت به روش پیش­بین سنتی و کنترل مناسب و هم­زمان جریان و ضریب قدرت ورودی و ولتاژ خروجی است. در نهایت، با انجام شبیه­سازی در محیط نرم­افزار MATLAB/Simulink صحت عملکرد روش ارائه شده تصدیق می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

A Hybrid Control Strategy Based on Model Predictive Control Approach for the Rectifier Stage of Solid-State Transformer

نویسندگان [English]

  • P. Haghgooei
  • D. A.Khaburi
  • M. Khosravi
School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

This paper focuses on studying the Solid-State Transformer (SST) and proposing a control strategy for its input stage. The conventional low-frequency transformers suffer some drawbacks such as uncontrolled voltages and currents, high sensitivity to harmonics, low voltage quality in saturation conditions and so on. The solid-state transformer consists of several power electronic converter stages and as it is designed to be utilized as the power supply in electric train applications in this research, it is considered to be step-down and only has a DC output. Therefore, the studied configuration only consists of rectification and DC-DC step-down conversion stages. The main contribution of this paper is to propose a hybrid method based upon the Model Predictive Control (MPC) approach in order to balance the capacitor voltages and also control the power factor of input rectifier. The suggested strategy provides some advantages compared to other methods such as simple algorithm, significantly lower computational burden (compared to the conventional predictive control method) and simultaneous control of the input current, power factor and also the output voltage. Finally, the feasibility of the proposed method is verified through conducting simulations in the MATLAB/Simulink environment.

کلیدواژه‌ها [English]

  • Solid-State Transformer (SST)
  • Cascaded H-bridge (CHB) rectifier
  • Model Predictive Control (MPC) method
  • Capacitor voltage balancing
[1]      H. Chen, and D. Divan, “Soft-switching solid state transformer (S4T),” IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 2933-2947, 2017.
[2]      B. L. Liu, Y. B. Zha, and T. Zhang, “DQ frame predictive current control methods for inverter stage of solid state transformer,” IET Power Electronics, vol. 10, no. 6, pp. 687-696, 2017.
[3]      X. She, A. Q. Huang, and R. Burgos, “Review of solid-state transformer technologies and their application in power distribution systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 3, pp. 186-198, 2013.
[4]      J. E. Huber, and J. W. Kolar, “Volume/weight/cost comparison of a 1MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer,” IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014.
[5]      J. L. Brooks, Solid State Transformer Concept Development, No. CEL-TN-1575. CIVIL ENGINEERING LAB (NAVY) PORT HUENEME CA, 1980.
[6]      R. J. G. Montoya, A. Mallela, and J. C. Balda, “An evaluation of selected solid-state transformer topologies for electric distribution systems,” IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 2015.
[7]      F. Wang, G. Yao, A. Huang, W. Song, and X. Ni, “A 3.6 kV high performance solid state transformer based on 13kV SiC MOSFET,” IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Galway, Ireland, 2014.
[8]      D. Wang, J. Tian, C. Mao, J. Lu, Y. Duan, J. Qiu, and H. Cai, “A 10-kV/400-V 500-kVA electronic power transformer,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6653-6663, 2016.
[9]      D. G. Shah, and M. L. Crow, “Stability Assessment Extensions for Single-Phase Distribution Solid-State Transformers,” IEEE Transactions on Power Delivery, vol. 30, no. 3, pp. 1636-1638, 2015.
[10]      H. Qin, and J. W. Kimball, “Solid-state transformer architecture using AC–AC dual-active-bridge converter,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3720-3730, 2013.
[11]      S. F. Pinto, P. V. Mendes, and J. F. Silva, “Modular matrix converter based solid state transformer for smart grids,” Electric Power Systems Research, vol. 136, pp. 189-200, 2016.
[12]      S. Falcones, R. Ayyanar, and X. Mao, “A DC–DC multiport-converter-based solid-state transformer integrating distributed generation and storage,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2192-2203, 2013.
[13]      H. Chen, A. Prasai, R. Moghe, K. Chintakrinda, and D. Divan, “A 50-kVA Three-Phase Solid-State Transformer Based on the Minimal Topology: Dyna-C,” IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8126-8137, 2016.
[14]      H. Chen, A. Prasai, and D. Divan, “Dyna-C: A Minimal Topology for Bidirectional Solid-State Transformers,” IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 995-1005, 2017.
[15]      L. Wang, D. Zhang, Y. Wang, B. Wu, and H. S. Athab, “Power and voltage balance control of a novel three-phase solid-state transformer using multilevel cascaded H-bridge inverters for microgrid applications,” IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 3289-3301, 2016.
[16]      P. Yong, M. Hong, Z. C. Bi, and Z. C. Feng, “A solid-state transformer with controllable input power factor and output voltage,” International Conference on Power System Technology (POWERCON), Chengdu, China, 2014.
[17]      Q. Chen, N. Liu, C. Hu, L. Wang, and J. Zhang, “Autonomous Energy Management Strategy for Solid-State Transformer to Integrate PV-Assisted EV Charging Station Participating in Ancillary Service,” IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 258-269, 2017.
[18]      J. Shi, W. Gou, H. Yuan, T. Zhao, and A. Q. Huang, “Research on voltage and power balance control for cascaded modular solid-state transformer,” IEEE Transactions on Power Electronics, vol. 26, no. 4,pp. 1154-1166, 2011.
[19]      P. Zanchetta, D. B. Gerry, V. G. Monopoli, J. C. Clare, and P. W. Wheeler, “Predictive current control for multilevel active rectifiers with reduced switching frequency,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 163-172, 2008.
[20]      D. Gerry, P. Wheeler, and J. Clare, “High-voltage multicellular converters applied to ac/ac conversion,” International journal of electronics, vol. 90, no. 11-12, pp. 751-762, 2003.
[21]      M. Moosavi, G. Farivar, H. Iman-Eini, and S. M. Shekarabi, “A voltage balancing strategy with extended operating region for cascaded H-bridge converters,” IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 5044-5053, 2014.
[22]      A. Moeini, H. Iman-Eini, and A. Marzoughi, “DC link voltage balancing approach for cascaded H-bridge active rectifier based on selective harmonic elimination-pulse width modulation,” IET Power Electronics, vol. 8, no. 4, pp. 583-590, 2015.
[23]      T. Zhao, G. Wang, S. Bhattacharya, and A. Q. Huang, “Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1523-1532, 2013.
[24]      X. Wang, J. Liu, S. Ouyang, T. Xu, F. Meng, and S. Song, “Control and experiment of an H-bridge-based three-phase three-stage modular power electronic transformer,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2002-2011, 2016.
[25]      M. Dabbaghjamanesh, A. Moeini, M. Ashkaboosi, P. Khazaei, and K. Mirzapalangi, “High performance control of grid connected cascaded H-Bridge active rectifier based on type II-fuzzy logic controller with low frequency modulation technique,” International Journal of Electrical and Computer Engineering, vol. 6, no. 2, pp. 484-494, 2016.
[26]      داود عرب خابوری، علی سراجیان، و علیرضا عباس‌زاده، «کنترل پیش‌بین گشتاور بدون حسگر ماشین سنکرون رلوکتانسی مجهزشده با آهن‌ربای دائم»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 1، صفحه 171-182، 1396.
[27]      P. Cortes, G. Ortiz, J. I. Yuz, J. Rodriguez, S. Vazquez, and L. G. Franquelo, “Model predictive control of multilevel cascaded H-bridge inverters,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2691-2699, 2010.
[28]      M. A. Pérez, P. Cortés, and J. Rodríguez, “Predictive control algorithm technique for multilevel asymmetric cascaded H-bridge inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4354-4361, 2008.
[29]      L. Tarisciotti, P. Zanchetta, A. Watson, S. Bifaretti, and J. C. Clare, “Modulated model predictive control for a seven-level cascaded H-bridge back-to-back converter,” IEEE Transactions on industrial electronics, vol. 61, no. 10, pp. 5375-5383, 2014.
[30]      M. Vasiladiotis, K. Pavlou, S. Manias, and A. Rufer, “Model predictive-based control method for cascaded H-bridge multilevel active rectifiers,” IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, USA, 2011.
[31]      P. Karamanakos, K. Pavlou, and S. Manias, “An enumeration-based model predictive control strategy for the cascaded H-bridge multilevel rectifier,” IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3480-3489, 2014.
[32]      C. Qi, X. Chen, P. Tu, and P. Wang, “Cell-by-Cell-Based Finite-Control-Set Model Predictive Control for a Single-Phase Cascaded H-Bridge Rectifier,” IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1654-1665, 2017.
[33]      Y. Zhang, X. Wu, X. Yuan, Y. Wang, and P. Dai, “Fast model predictive control for multilevel cascaded h-bridge statcom with polynomial computation time,” IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5231-5243, 2016.
[34]      X. Yu, X. She, X. Zhou, and A. Q. Huang, “Power management for DC microgrid enabled by solid-state transformer,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 954-965, 2014.
[35]      D. Dujic, C. Zhao, A. Mester, J. K. Steinke, M. Weiss, S. Lewdeni-Schmid, T. Chaudhuri, and P. Stefanutti, “Power electronic traction transformer-low voltage prototype,” IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5522-5534, 2013.
[36]      S. Han, and D. Divan, “Bi-directional DC/DC converters for plug-in hybrid electric vehicle (PHEV) applications,” Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Austin, TX, USA, 2008.
[37]      X. Li, and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter,” IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 850-862, 2010.