مقایسه روشهای کنترل مبدل سمت ماشین در توربین-ژنراتور بادی مبدل کامل با ژنراتور سنکرون مغناطیس دائم

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه کاشان

چکیده

محور توربین- ژنراتورهای بادی نسبتاً نرم بوده و سیستم مکانیکی عموماً به‌صورت دو‌جرمه مدل می‌شود. مدل دو‌جرمه دارای مدهای پیچشی نوسانی است که در‌هنگام تغییرات سرعت باد و وقوع خطا در شبکه این مدها در پاسخ‌های خروجی ژنراتور ظاهر می‌شود. توربین-ژنراتورهای بادی سنکرون مغناطیس دائم دارای مبدل‌های سمت ماشین و سمت شبکه است که به‌وسیله مبدل سمت ماشین می‌توان سرعت/توان ژنراتور را در مقدار مطلوب جهت کارکرد در مد توان بهینه کنترل نمود. در حقیقت کنترل اصلی توربین بر‌عهده مبدل سمت ماشین است. همچنین به‌وسیله مبدل سمت شبکه ولتاژ لینک dc در مقدار مرجع ثابت نگه داشته‌می‌شود. هدف این مقاله، تبیین استراتژی‌های مختلف کنترلی مبدل سمت ماشین در توربین- ژنراتور بادی سنکرون مغناطیس دائم است. استراتژی‌های مختلف کنترلی شامل کنترل توربین-ژنراتور در مد کنترل سرعت، مد کنترل توان و یا مد نرخ سرعت نوک بهینه می‌باشد. سپس عملکرد روش‌های کنترلی شرح‌داده‌شده، در‌ازای تغییرات سرعت باد، نوسانات توان ناشی از سایه برج و افتادگی ولتاژ شبکه آزموده و مقایسه می‌شود. در ادامه با بهبود عملکرد کنترل کننده مبدل سمت ماشین، پاسخ توربین بادی بهبود داده‌می‌شود

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Machine side Converter Control Methods in PMSG based Wind Turbines

نویسندگان [English]

  • M. Rahimi
  • A. Haghi
  • M. Belali
Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran
چکیده [English]

Wind turbine-generators shaft is relatively soft and wind turbine mechanical systems is usually represented as two mass model. Two mass model contains torsional oscillatory modes that may be excited under wind speed variations and grid fault conditions. In this state, torsional oscillations may appear on the output responses of the wind turbine-generator. PMSG based WTs include two converters: machine side converter (MSC) and grid side converter (GSC). The main function of the GSC is the dc-link voltage regulation. Also, the MSC is used to control the generator speed or active power, and thus the control of the generator is mainly carried out by the MSC. There are different strategies for the control of MSC. The purpose of this paper is to study different control strategies of the MSC in the PMSG based WTs. These control strategies include turbine-generator control in speed control mode, power control mode or optimum tip speed ratio mode. Then, performance of the WT by using the mentioned control strategies against wind speed changes, aerodynamic power fluctuations due to tower shadow effect and grid voltage dip is examined and compared. Next, by modifying the MSC control, the wind turbine response is improved.

کلیدواژه‌ها [English]

  • Permanent magnet synchronous turbine-generator
  • shaft torsional torque oscillations
  • machine side converter control
  • speed control
  • tower shadow
[1] R. Teodorescu, and F. Blaabjerg, “Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode”, IEEE Trans. Power Electron. vol. 19, no. 5, pp. 1323-1332, 2004.
[2] A. Uehara, A. Pratap, T. Goya, T. Senjyu, A. Yona, N. Urasaki, and T. Funabashi, “A Coordinated Control Method to Smooth Wind Power Fluctuations of a PMSG-Based WECS”, IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 550-558, 2011.
[3] A. H. K. Alaboudy, A. A. Daoud, S. S. Desouky, and A. A. Salem, “Converter controls and flicker study of PMSG-based grid connected wind turbines”, Ain Shams Engineering Journal, vol. 4, no. 1, pp. 75-91, 2013.
[4] A. H. Rajaei, M. Mohamadian, S. M. Dehghan, and A. Yazdian, “PMSG-based variable speed wind energy conversion system using Vienna rectifier”, Euro. Trans. Electric. Power., vol. 21, no. 1, pp. 954-972, 2011.
[5] N. M. A. Freire, A. J. M. Cardoso, “Fault-tolerant PMSG drive with reduced DC-link ratings for wind turbine applications”, IEEE, Emerg. Sel. Top. power Electron., vol. 2, no. 1, pp. 26-34, 2014.
[6] S. H. Zhang, K. J. Tseng, D. M. Vilathgamuwa, T. M. Nguyen, X. Y. Wang, “Design of a Robust Grid Interface System for PMSG-Based Wind Turbine Generators”, IEEE Trans. Ind. Electron. vol. 58, no. 1, pp. 316-328, 2011.
[7] A. D. Hansen, and G. Michalke, “Modelling and control of variable- speed multi-pole permanent magnet synchronous generator wind turbine”, Wind Energy, vol. 11, no. 5, pp. 537-554, 2008.
[8] K. Xie, Z. Jiang, and W. Li, “Effect of wind speed on wind turbine power converter reliability”, IEEE Trans. energy convers., vol. 27, no. 1, pp. 96-104, 2012.
[9] J. Yan, H. Lin, Y. Feng, and Z. Q. Zhu, “Control of a grid-connected direct-drive wind energy conversion system”, Renewable Energy, vol. 66, pp. 371-380, 2014.
[10] M. Chinchilla, S. Arnaltes, and J. Burgos, “Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid”. IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 130-135, 2006.
[11] C. Wang, W. Lin, and X. Le, “Modelling of a PMSG Wind Turbine with Autonomous Control”, Mathematical Problems in Engineering, pp. 1-9, 2014.
[12] X. Zhang, Z. Wu, M. Hu, X. Li, G. Lv, “Coordinated Control Strategies of VSC-HVDC-Based Wind Power Systems for Low Voltage Ride Through” Energies, vol. 8, no. 7,  pp. 7224-7242, 2015.
[13] Cun-Lu Dang, Lei Zhang, Ming-Xing Zhou, “Optimal Power Control Model of Direct Driven PMSG”, Energy Procedia, vol. 12, pp.  844 – 848, 2011.
[14] O. Alizadeh, and A. Yazdani, “A Control Strategy for Power Regulation in a Direct-Drive WECS With Flexible Drive-Train”, IEEE Trans. Sustain. Energy., vol. 5, no. 4, October 2014.
[15] A. D. Hansen, and G. Michalke, “Modelling and control of variable-speed multi-pole permanent magnet synchronous generator wind turbine”, Wind Energy, vol. 11, no. 5, pp. 537–554, 2008.
[16] X. Yuan, F. Wang, D. Boroyevich, Y. Li, and  R. Burgos, “DC-link voltage control of a full power converter for wind generator operating in weak-grid systems”, IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2178–2192, 2009.
[17] A. D. Hansen, and G. Michalke, “Multi-pole permanent magnet synchronous generator wind turbines’ grid support capability in uninterrupted operation during grid faults”, IET Renewable Power Generation, vol. 3, no. 3, pp. 333–348, 2009.
[18] T. L. Van, T. D. Nguyen, T. T. Tran, H. D. Nguyen, “Advanced control strategy of back-to-back PWM converters in PMSG wind power system”, Power Engineering and Electical Engineering, Vol. 13, no. 2, pp. 81-95, 2015.
[19] سعید اباذری، امید مرادی، "بهبود میرایی نوسانات سیستم قدرت با بکارگیریUPFC  و تنظیم پارامترهای کنترل‌کننده بر‌اساس یک الگوریتم جدید PSO"، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، بهار 1395.
[20] محسن رحیمی، محمد رضا اسماعیلی، "طراحی کنترل‌کننده توان و بهبود میرایی نوسانات پیچشی در توربین بادی DFIG-710 kW نصب‌شده در سایت بینالود"، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 4، زمستان 1395.
[21] R. Cardenas, R. Pena, J. Clare & G. Asher, “Power smoothing in a variable speed wind-diesel system”, Power Electronics Specialist Conference, IEEE 34th Annual. Vol. 2, 2003.
[22] Cimpoeru, Andreea, and Kaiyuan Lu, “Encoderless Vector Control of PMSG for wind turbine applications”, Institute of energy technology, AALBORG University, M.Sc Thesis, pp. 14-21, 2010.‏
[23] J. F. Conroy, and R. Watson, "Frequency response capability of full converter wind turbine generators in comparison to conventional generation", IEEE trans. power syst., vol. 23, no. 2, pp. 649-656, 2008.
[24] W. Hu, C. Su, and Z. Chen, “Impact of wind shear and tower shadow effects on power system with large scale wind power penetration”, IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society, pp. 878-883, 2011.
[25] M. Reiso, “The Tower Shadow Effect in Downwind Wind Turbines”, Norwegian University of Science and Technology, PhD Thesis, 2013.
[26] D. S. Dolan, and P. W. Lehn, “Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow”, IEEE Trans, energy convers, vol. 21, no. 3, pp. 717-724, 2006.