[1] B. Kulis, “Metric learning: a survey,” Foundations and Trends® in Machine Learning, vol. 5, no. 4, pp. 287-364, 2013.
[2] A. Bellet, A. Habrard and M. Sebban, “A survey on metric learning for feature vectors and structured data,” ArXiv Preprint ArXiv, pp. 1306.6709, 2013.
[3] C. Jin and S. W. Jin, “Image distance metric learning based on neighborhood sets for automatic image annotation,” Journal of Visual Communication and Image Representation, vol. 34, pp. 167-175, 2016.
[4] J. Hu, J. Lu and Y. Tan, “Sharable and individual multi-view metric learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, no. 99, 2017 (In Press).
[5] H. Yan, “Kinship verification using neighborhood repulsed correlation metric learning,” Image and Vision Computing, vol. 60, no. 1, pp. 91-97, 2017.
[6] H. Yan, and J. Hu, “Video-based kinship verification using distance metric learning,” Pattern Recognition, vol. 75, pp.15-24, 2018.
[7] E. P. Xing, M. I. Jordan, S. J. Russell and A. Y. Ng, “Distance metric learning with application to clustering with side-information,” In Advances in Neural Information Processing Systems (NIPS), vol. 15, pp. 521-528, 2003.
[8] M. Schultz and T. Joachims, “Learning a distance metric from relative comparisons,” in Advances in Neural Information Processing Systems (NIPS), vol. 16, pp. 41-48, 2004.
[9] J. V. Davis, B. Kulis, P. Jain, S. Sra and I. S. Dhillon, “Information theoretic metric learning,” In Proceedings of the 24th International Conference on Machine Learning (ICML), pp. 209–216, 2007.
[10] G. Kunapuli and J. Shavlik, “Mirror descent for metric learning: a unified approach,” In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database (ECML/PKDD), pp. 859–874, 2012.
[11] Q. Qian, R. Jin, J. Yi, L. Zhang and S. Zhu, “Efficient distance metric learning by adaptive sampling and mini-batch stochastic gradient descent (SGD),” Machine Learning, vol. 99, no. 3, pp. 353-372, 2015.
[12] M. T. Law, N. Thome and M. Cord, “Learning a distance metric from relative comparisons between quadruplets of images,” International Journal of Computer Vision, vol. 121, no. 1, pp. 65-94, 2017.
[13] B. Nguyen, C. Morell and B. D. Baets, “Supervised distance metric learning through maximization of the Jeffrey divergence,” Pattern Recognition, vol. 64, pp. 215-225, 2017.
[14] K. Q. Weinberger and K. S. Lawrence, “Distance metric learning for large margin nearest neighbor classification,” Journal of Machine Learning Research, vol. 10, pp. 207-244, 2009.
[15] Y. Ying and P. Li, “Distance metric learning with eigenvalue optimization,” Journal of Machine Learning Research, vol. 13, no. 1, pp. 1–26, Jan. 2012.
[16] W. Zuo, F. Wang, D Zhang, L. Lin, Y. Huang, D. Meng and L. Zhang, “Distance metric learning via iterated support vector machines,” IEEE Transactions on Image Processing, vol. 26, no. 10, pp. 4937-4950, 2017.
[17] Z. Hao, Y. Ruan, Y. Xiao and B. Liu, “A multi-task-based classification framework for multi-instance distance metric learning,” Neurocomputing, vol. 275, pp. 418-429, 2018.
[18] وحیده منعمیزاده و جواد حمیدزاده، «جستجوی k نزدیکترین همسایه تقریبی با روش ترکیب خطی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 1249-1237، پاییز 1396.
[19] مهرداد حیدری ارجلو، سید قدرتاله سیفالسادات و مرتضی رزاز، «یک روش هوشمند تشخیص جزیره در شبکهی توزیع دارای تولیدات پراکنده مبتنی بر تبدیل موجک و نزدیکترین K-همسایگی (KNN)»، مجله مهندسی برق دانشگاه تبریز، جلد 19، شماره 1، صفحات 15-26، 1392.
[20] D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet and K. Q. Weinberger, “Non-linear metric learning,” In Advances in Neural Information Processing Systems (NIPS), vol. 25, pp. 2573-2581, 2012.
[21] نصیبه اسدیپرور ماسوله و اسدالله شاهبهرامی، «تخمین خودکار سن از روی تصویر چهره با تلفیق ویژگیهای آماری و بافت»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 842-829، پاییز 1396.
[22] T. Ahonen, A. Hadid and M. Pietikäinen, “Face recognition with local binary patterns,” In European Conference on Computer Vision (ECCV-2004), pp. 469-481, Springer, Berlin, Heidelberg, 2004.
[23] G. Zhang, X. Huang, S. Z. Li, Y. Wang and X. Wu, “Boosting local binary pattern (LBP)-based face recognition,” In Advances in Biometric Person Authentication, pp. 179-186, Springer Berlin Heidelberg, 2004.
[24] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Improving neural networks by preventing co-adaptation of feature detectors,” Arxiv Preprint Arxiv, pp. 1207-0580, 2012.
[25] L. V. D. Maaten, M. Chen, S. Tyree and K. Q. Weinberger, “Learning with marginalized corrupted features,” In International Conference on Machine Learning (ICML), pp. 410-418, 2013.
[26] S. Wager, S. Wang and P. Liang, “Dropout training as adaptive regularization,” In Advances in Neural Information Processing Systems (NIPS), vol. 26, pp. 351-359, 2013.
[27] Q. Qian, J. Hu, R. Jin, J. Pei and S. Zhu, “Distance metric learning using dropout: a structured regularization approach,” In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 323-332, 2014.
[28] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
[29] B. Shaw, B. C. Huang and T. Jebara, “Learning a distance metric from a network,” In Advances in Neural Information Processing Systems (NIPS), vol. 24, pp. 1899-1907, 2011.
[30] Q. Qian, R. Jin, S. Zhu and Y. Lin, “Fine-grained visual categorization via multi-stage metric learning,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3716-3724, 2015.
[31] G. Chechik, V. Sharma, U. Shalit and S. Bengio, “Large scale online learning of image similarity through ranking,” Journal of Machine Learning Research, vol. 11, pp. 1109-1135, 2010.
[32] K. Saenko, B. Kulis,M. Fritz and T. Darrell, “Adapting visual category models to new domains,” In European Conference on Computer Vision (ECCV-2010), pp. 213–226, 2010.
[33] O. Pele and M. Werman, “The quadratic-chi histogram distance family,” In European Conference on Computer Vision (ECCV-2010), pp. 749-762. Springer, Berlin, Heidelberg, 2010.
[34] J. Alcalá-Fdez, L. Sánchez, S. García, M. D. Jesus, S. Ventura, J. Garrell, J. Otero, C. Romero, J. Bacardit, V. Rivas, J. Fernández and F. Herrera, “KEEL: a software tool to assess evolutionary algorithms for data mining problems,” Soft Computing, vol. 13, no. 3, pp. 307–318, 2009.
[35] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar and I. Matthews, “The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression,” IEEE Computer Society Conf. Computer Vision and Pattern Recognition-Workshops, pp. 94-101, June 2010,
[36] M. J. Lyons, J. Budynek and S. Akamatsu, “Automatic classification of single facial images,” IEEETransactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 12, pp. 1357-1362, 1999.
[37] P. Belhumeur, J. Hespanha and D. Kriegman, “Eigenfaces vs. fisherfaces: Recognition Using Class Specific Linear Projection,” IEEETransactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, 1997.
[38] W. Yang, L. Xu, X. Chen, F. Zheng and Y. Liu, “Chi-squared distance metric learning for histogram data,” Mathematical Problems in Engineering, vol. 2015, 2015.
[39] T. Ojala, M. Pietikäinen and D. Harwood, “A comparative study of texture measures with classification based on featured distributions,” Pattern Recognition., vol. 29, no. 1, pp. 51-59., 1996.
[40] N. S. Vu and A. Caplier, “Enhanced patterns of oriented edge magnitudes for face recognition and image matching,” IEEETransactions on Image Processing, vol. 21, no. 3, pp. 1352-1365, 2012.
[41] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” In 2005 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR'05), vol. 1, pp. 886-893, June 2005.