تخصیص توان نوری و سطح مدولاسیون در شبکه‌های نوری با لایه کنترل توزیع‌یافته مبتنی بر محاسبه مسیر متمرکز

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق - دانشگاه صنعتی خواجه نصیر الدین طوسی

چکیده

رشد نمایی تقاضای ترافیک در شبکه‌های نوری لزوم استفاده بهینه از پهنای باند را دربرداشته‌است. افزایش ظرفیت شبکه با بهبود کیفیت سیگنال‌های نوری و امکان انتقال نرخ داده بیشتر با تخصیص مدولاسیون‌های سطح بالا تحقق می‌یابد. از عوامل مهم کاهش کیفیت سیگنال‌های نوری، اثرهای غیرخطی است که محاسبه دقیق آن در شبکه‌های نوری با لایه کنترل توزیع‌یافته ضمن افزایش پیچیدگی با صرف هزینه زیادی همراه است. در این مقاله برای شبکه‌های نوری با لایه کنترل متمرکز یک الگوریتم محاسبه مسیر جدید با درنظرگرفتن مدل نویز گوسی برای بیان اثرهای غیرخطی ارائه می‌شود که علاوه‌بر تخصیص طول موج با روش ابتکاری، توان مسیرهای نوری در هر لحظه با هدف بیشینه‌سازی نرخ شانون در کل شبکه، به‌روزرسانی شده تا با تخصیص مدولاسیون‌های سطح بالا، به هر درخواست حداقل مسیر نوری ممکن تخصیص داده شود. نتایج شبیه‌سازی روی شبکه DTG نشان می‌دهد که در مقایسه با روش‌های موجود تعداد مدولاسیون‌های سطح بالا بیشتر شده و گذردهی شبکه به‌طور متوسط به اندازه THz 138.4 افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Optical Power and Modulation Level Assignment in PCE-based GMPLS Control Plane

نویسندگان [English]

  • M. Yaribeygi
  • L. Beygi
Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

The tremendous growth in the demand for high data-rates in optical networks makes efficient use of available bandwidth indispensable. Network's throughput can be improved by exploiting high-level modulation formats which allow the transmission of high data-rate and upgrading the quality of optical communication signal which degrades due to transmission impairments. The nonlinearity of optical fibers has been long recognized as one of the most overriding factors limiting the quality of optical communication signal. Accurate evaluation of nonlinearity in generalized multiprotocol label switching (GMPLS) optical networks is more complex and costly. In this paper, we present a novel heuristic joint routing, wavelength and power allocation method for path computation element (PCE) based architecture for GMPLS optical networks such that launch power of the lightpaths are updated continuously, thereby the minimum number of lightpaths are assigned to the demands. The Gaussian noise (GN) model is exploited to capture the nonlinear effect and we focus on maximizing the Shannon sum rate for network. In the DTG network compared to existing methods, numerical results demonstrate that the number of higher order modulation formats is increased and the network throughput is improved about 138.4 THz.

کلیدواژه‌ها [English]

  • Optical network
  • lightpath
  • PCE-based GMPLS
  • gaussian noise model
  • power optimization
  • modulation
  • throughput
[1] E. Hugues-Salas et al., “Next generation optical nodes: The vision of the European research project IDEALIST,” IEEECommun. Mag., vol. 53, no. 2, pp. 172–181, 2015.
[2] O. Gerstel, “Elastic Optical Networking : A New Dawn for the Optical Layer,” IEEE Commun. Mag., vol. 50, no. February, p. 12–20, 2012.
[3] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Opt. networks Mag., vol. 1, no. 1, pp. 47–60, 2000.
   سعید سید طاهری و علی رضا عندلیب، « طراحی واتافتگرهای مبتنی بر بلورهای فوتونی با قابلیت توانسازی مناسب برای سامانه‌های مخابرات مخابرات نوری»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، 1396.
[5] پرویز امیری، محمود صیفوری، بابک آفرین و آوا هدایتی پور، « طراحی پیش تقویت کننده RGC کم نویز مدار مجتمغ CMOS با پهنای باند GHz20 و بهره dBΩ60 »، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 2، 1395.
[6] D. S. Frankel, Model driven architecture applying MDA. John Wiley & Sons, 2003.
[7] A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Light. Technol., vol. 30, no. 10, pp. 1524–1539, 2012.
[8] P. Poggiolini and I. Paper, “The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems,” J. Light. Technol., vol. 30, no. 24, pp. 3857–3879, 2012.
[9] P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Light. Technol., vol. 32, no. 4, pp. 694–721, 2014.
[10] X. Chen and W. Shieh, “Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems,” Opt. Express, vol. 18, no. 18, pp. 19039–19054, 2010.
[11] P. Johannisson and M. Karlsson, “Perturbation analysis of nonlinear propagation in a strongly dispersive optical communication system,” J. Light. Technol., vol. 31, no. 8, pp. 1273–1282, 2013.
[12] D. J. Ives, P. Bayvel, and S. J. Savory, “Adapting transmitter power and modulation format to improve optical network performance utilizing the gaussian noise model of nonlinear impairments,” J. Light. Technol., vol. 32, no. 21, pp. 3485–3494, 2014.
[13] S. J. Savory, “Congestion aware routing in nonlinear elastic optical networks,” IEEE Photonics Technol. Lett., vol. 26, no. 10, pp. 1057–1060, 2014.
[14] A. Alvarado, D. J. Ives, S. J. Savory, and P. Bayvel, “On the impact of optimal modulation and FEC overhead on future optical networks,” J. Light. Technol., vol. 34, no. 9, pp. 2339–2352, 2016.
[15] I. Roberts, J. M. Kahn, and D. Boertjes, “Convex channel power optimization in nonlinear WDM systems using Gaussian noise model,” J. Light. Technol., vol. 34, no. 13, pp. 3212–3222, 2016.
[16] M. Kanj, E. Le Rouzic, J. Meuric, B. Cousin, and D. Amar, “Optical power control in GMPLS control plane,” J. Opt. Commun. Netw., vol. 8, no. 8, pp. 553–568, 2016.
[17] F. Paolucci, F. Cugini, A. Giorgetti, N. Sambo, and P. Castoldi, “A survey on the path computation element (PCE) architecture,” IEEE Commun. Surv. Tutorials, vol. 15, no. 4, pp. 1819–1841, 2013.
[18] R. Munoz, R. Casellas, R. Martínez, and R. Vilalta, “PCE: What is it, how does it work and what are its limitations?,” J. Light. Technol., vol. 32, no. 4, pp. 528–543, 2014.
[19] F. Agraz Bujan, “Advanced routing mechanisms in ASON/GMPLS networks,” 2012.