دیپلکسر با رزوناتورهای حلقوی مکمل شکاف‌دار به شکلS خم‌شده در کاربردهای LTE

نوع مقاله : علمی-پژوهشی

نویسندگان

گروه مهندسی برق - دانشگاه آزاد اسلامی

چکیده

در این مقاله ساختار جدیدی از یک دیپلکسر با استفاده از تکنولوژی موجبرمجتمع‌شده (SIW) و رزوناتور حلقوی مکمل شکاف‌دار برای کاربردهای  LTE در فرکانس های 1.3 گیگاهرتز و2.1 گیگاهرتز طراحی شده است. این دیپلکسر فشرده‌شده, توسط رزوناتور حلقوی S شکل در یک ساختار موجبری ارائه شده است. در این طرح ابتدا فیلترهای متناظر با هریک از باندها در شبیه‌ساز طراحی و سپس با استفاده از پارامترهای پراکندگی هر یک از فیلترها ساختار T شکل در ورودی دیپلکسر بهینه‌سازی شد. با توجه به نتایج اندازه‌گیری دیپلکسر ساخته‌شده دهانه‌های ورودی و خروجی تطبیق امپدانسی مناسبی در باندهای مورد نظر دارند و تلفات انتقالی در فرکانس های1.3 گیگاهرتز و2.1  گیگاهرتز به‌ترتیب حدود  1 دسی‌بل و 2 دسی‌بل است. مقدار ایزولاسیون بین دهانه‌های خروجی بیش از30 دسی‌بل است. نهایتا ساختار پیشنهادی کارایی بسیار مطلوبی را منعکس می‌کند. این ساختار مزیت‌هایی را مانند ابعاد کوچک ، تلفات پایین ، ایزولاسیون بالا ، ساخت آسان و قابلیت مجتمع‌سازی‌شدن با دیگر مدارات مسطح را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Diplexer Embedded with Crisped S-shaped Complementary Split Ring Resonators for LTE Band Application

نویسندگان [English]

  • P. Mohammadi
  • A. Banihashem
Department of Electrical Engineering, Islamic Azad University, Urmia, Iran
چکیده [English]

In this paper, a novel structure of diplexer is designed based on Substrate Integrated Wave guide (SIW) technology and S-shaped complementary split ring resonator  to operate in LTE1.3 GHz  -2.1 GHz band. A miniaturized and compact SIW diplexer implemented by Crisped S-shaped Complementary Split Ring operated in a waveguide format is proposed and presented. In design process, firstly, the filters corresponding to each of the bands is designed in simulator, then by using S-parameter of each filter the T-shaped structure dimensions of the input feeding diplexer is achieved and optimized. It is deduced from measurement results of diplexer that input and output impedance matching in the respective bands, transmission losses are1dB and 2dB for 1.3 GHz and 2.1 GHz respectively. The isolation between output ports is better than 30dB. Finally the proposed structure reflects the performance is highly desirable. This structure illustrates advantages in terms of the small size, low loss, high isolation, easy realization and integration with other planar circuits. 

کلیدواژه‌ها [English]

  • Diplexer
  • microstrip
  • SIW
  • complementary split ring resonator
[1] رحیم انتظاری و علی جبار رشیدی، »استخراج تصویر از اهداف با حرکت غیریکنواخت در رادار دهانه ترکیبی معکوس«، مجله مهندسی برق دانشگاه تبریز، جلد47 ،شماره 2، تابستان 1396.
[2] ابراهیم باقری، محمد حسین کهایی، محمد جباریان و علی اصغربهشتی شیرازی »طراحی شکل موج ارسالی رادار به منظور بالا بردن دقت تخمین تاخیر و فرکانس داپلر هدف با معیار CRP «، مجله مهندسی برق دانشگاه تبریز، جلد46 ،شماره 3، پاییز 1395.
[3] J. M. Rebollar, J. R. Montejo-Garai and A. Ohoro, “Asymmetric H-plane T-junction for broadband diplexer applications,” IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C, Salt Lake City, UT, USA, vol.4, pp. 2032-2035, 2000.
[4] C.-H.  Chen, T.-Y.  Huang, C.-P.  Chou, and R.-B.  Wu,  Microstrip diplexers  design  with  common  resonator  sections  for  compact  size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1945–1952, May 2006.
[5] Z.  C.  Hao, W.  Hong, J.  X.  Chen, X.  P.  Chen, and K.  Wu, “Planar diplexer for microwave integrated circuits,” Proc. Inst. Elect. Eng., vol. 152, no. 6, pp. 455–459, Dec. 2005.
[6] F. Falcone, T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, “Effective negative-epsilon stopbandmicrostrip lines based on complementary split ring resonators,” IEEE Microw. And Wireless Compon. Lett., vol. 14, no. 14, pp. 280–282, Jun. 2004.
[7] M. Gil, J. Bonache, J. Garcia, J. Martel and F. Martin, “Composite right/left-handed  metamaterial  transmission  lines  based  on  complementary split-rings resonators and their applications to very wideband and compact  filter  design,” IEEE  Trans. Microw.  Theory Tech., vol. 55, no. 6, pp. 1296–1303, Jun. 2007.
[8] P.Mohammadi, A.Piroutiniya, R.Ebadzadeh and M.Mohammadifar, “Multi-notched CPW-fed antenna by CSRRs and MLs,” 16th Mediterranean Microwave Symposium (MMS), 2016.
[9] P. Mohammadi, S. Demir, “Two layers substrate integrated waveguide power divider,”General Assembly and Scientific Symposium, 2011 XXXth URSI, pp. 1-4.
[10] P. Mohammadi, S. Demir, “Multi-layer substrate integrated waveguide E-plane power divider,”­ Progress In Electromagnetics Research, vol. 30, pp. 159–172, 2012.
[11] P. Mohammadi, S.Demir, “Loss reduction in substrate integrated waveguide structuresuction in substrate integrated waveguide structures,”Progress In Electromagnetics Research, vol. 46, pp. 125–133,  2014.
[12] A. Piroutiniya, P Mohammadi, “The Substrate Integrated Waveguide T-junction Power Divider with Arbitrary Power Dividing Ratio,” Applied Computational Electromagnetics Society Journal vol.31, no.4, 2016.
[13] P. Mohammadi, Masoud Khoubroo Eslamloo, “Compact Size, Equal-Length and Unequal-Width Substrate Integrated Waveguide Phase Shifter,” 18th International Conference on Advanced Communication Technology (ICACT) pp. 373-376, 2016.
[14] Y. Dong, T. Yang, and T. Itoh, “Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 2211–2222, Sep. 2009.
[15] Y.Dong and T.Itoh, “Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design,”   IEEE Microw. and Wireless Compon. Lett., vol. 21, no. 1, pp. 10–12, Jan. 2011.