کنترل موقعیت مبتنی بر بینایی کوادکوپترAR.Drone 2.0 شناور با استفاده از منطق فازی

نویسندگان

دانشکده مهندسی فناوری‌های نوین - دانشگاه تبریز

چکیده

خودکارسازی شناوری کوادکوپتر AR.Drone 2.0 که موضوعی مهم و پیش‌نیاز سایر خودکارسازی‌ها است هدف این مقاله می‌باشد. در این مقاله الگوریتم جدیدی  به نام GSPnP برای تخمین موقعیت ربات پرنده با استفاده از تک دوربین پیشنهاد می‌گردد. همچنین یک کنترلر فازی بهینه موسوم به TGM برای پایدارسازی شناوری کوادکوپتر طراحی و پارامترهای بهینه کنترلر فازی تعیین می‌شوند. موقعیت فعلی کوادکوپتر نسبت به مارکر کتابخانه ArUco با پردازش تصاویر دوربین زیرین ربات توسط الگوریتم پیشنهادی GSPnP محاسبه و به کنترلر ارسال می‌شود. خروجی کنترلر بر اساس درایور ربات متعلق به سیستم عامل رباتیک (ROS) محاسبه شده و به ربات شبیه‌سازی شده در محیط شبیه‌سازی Gazebo ارسال می‌شود. نتایج به‌دست‌آمده نشان‌دهنده عملکرد دقیق‌تر و مطلوب‌تر روش GSPnP و روش کنترل فازی TGM با خطای کمتر از 30، 40 و 20 میلی‌متر در کنترل طول، عرض و ارتفاع نسبت به سایر روش‌ها، در کنترل موقعیت ربات است.

کلیدواژه‌ها


عنوان مقاله [English]

Position Based Visual Hovering Control of the AR.Drone 2.0 Quadcopter Using Fuzzy Logic

نویسندگان [English]

  • S. Eyvazi Adli
  • M. Shoaran
  • S. M. S. Noorani
Faculty of Engineering-Emerging Technologies, University of Tabriz, Tabriz, Iran
چکیده [English]

Autonomous hovering of AR.Drone 2.0 quadcopter, which is an important subject and prerequisite for other autonomous UAV applications, is the goal of this paper. We propose a new method, called GSPnP, for pose estimation using only the bottom camera of the robot. Moreover, an optimal fuzzy controller, called TGM, is designed in order to stabilize the quadcopter hovering. Then, the optimal parameter values for the controller are obtained.The current position of the robot, relative to the ArUco library marker, is computed using our proposed GSPnP algorithm and the images of the bottom camera. The current position is sent to the controller and the output is computed based on the ROS AR.Drone 2.0 driver and is sent to the robot simulated in the Gazebo world. The results indicate a more accurate and desirable performance of GSPnP method and TGM fuzzy controller in controlling the robot position compared with other methods with an error of less than 30, 40, and 20 millimeters in x, y, and z directions, respectively.

کلیدواژه‌ها [English]

  • Quadcopter AR.Drone 2.0
  • Autonomous hovering
  • PnP pose estimation
  • Fuzzy controller
  • Gazebo simulator
  • ROS
[1] https://www.dji.com/
[2] https://www.parrot.com/us/
[3] Parrot AR.Drone 2.0. http://ardrone2.parrot.com/
[4] https://www.ni.com/en-us/shop/labview.html
[5] ArUco: a minimal library for Agumented Reality applications based on OpenCV. https://www.uco.es/investiga/grupos/ava/node/26
[6] M. A. Mogensen, The AR Drone LabVIEW Toolkit: A Software Framework for the Control of Low Cost Quadrotor Aerial Robots, M.Sc. Thesis, TUFTS University, Medford, MA, 2012.
[7] T. Krajnik, V. Vonasek, D. Fiser and J. Faigel, “AR-Drone as a Platform for Robotics,” Int. Conf. on Research and Education in Robotics-EUROBOT, pp. 172-186, 2011.
[8] S. Yue, Modeling, Identification and Control of a Quadrotor Drone Using Low-Resolution Sensing, M.Sc. Thesis, University of Illinois, Champaign, IL, 2012.
[9] A. Prayitno, V. Indrawati and G. Utomo, “Trajectory Tracking of AR.Drone Quadrotor Using Fuzzy Logic Controller,” TELKOMNIKA, vol. 12, no. 4, pp. 819-828, 2014.
[10] V. Indrawati, A. Prayitno and G. Utomo, “Comparison of Two Fuzzy Logic Controller Schemes for Position Control of AR.Drone,” IEEE Int. Conf. on Information Technology and Electrical Engineering (ICITEE), pp. 360-363, 2015.
[11] V. Indrawati, A. Prayitno and T. A. Kusuma, “Waypoint Navigation of AR.Drone Quadrotor Using Fuzzy Logic Controller,” TELKOMNIKA, vol. 13, no. 3, pp. 930-939, 2013.
[12] Sarah Y. Tang, Vision-Based Control for Autonomous Quadrotor, Undergraduated Senior Thesis, Princeton University, NJ, 2013.
[13] K. Boudjit and C. Larbes, “Detection and Target Tracking With a Quadrotor using Fuzzy Logic,” Int. Conf. on Modeling, Identification and Control (ICMIC), pp. 127-132, 2016.
[14] The FuzzyLite Libraries for Fuzzy Logic Control. http://www.fuzzylite.com/
[15] Y. Tao, G. Xie, Y. Chen, H. Xiong, H. Liu, J. Zheng and J. Gao, “A PID and Fuzzy Logic Based Method for Quadrotor Aircraft Control Motion,” Journal of Intelligent and Fuzzy Systems, vol. 31, no. 6, pp. 2975-2983, 2016.
[16] C. H. Pi, V. B. Sheng and S. Cheng, “A Dual-loop Approach with Visual Servoing Fuzzy Control for Marker Navigation Quadcopter,” Int. Conf. on Intelligent Systems and Image Processing, pp. 384-390, 2016.
[17] OpenCV: Open Source Computer Vision Library. https://opencv.org/
[18] https://github.com/tum-vision/tum_simulator/
[19] Ardrone autonomy ros stack. https://github.com/AutonomyLab/ardrone_autonomy/
[20] E. H. Mamdani, “Application of Fuzzy Logic to Approximate Reasoning using Linguistic Synthesis,” IEEE Tran. On Computers, vol. 100, no. 12, pp. 1182-1191, 1977.
[21] Atulya Shivam Shree, Radhe Shyam Sharma,Laxmidhar Behera and K.S. Venkatesh, “Position Based Visual Control of the Hovering Quadcopter,” International Conference on Intelligent Human Computer Interaction, IHCI 2016, pp. 15-26.
[22] M.Bergamasco and M.Lovera. “Identification of Linear Models for the Dynamics of a Hovering Quadrotor ,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1696–1707, Sept 2014.
[23] B.T.M. Leong, S.M. Low, and M.P.L. Ooi, “Low-cost microcontroller-based hover control design of a quadcopter,” Procedia Engineering, vol. 41, pp. 458-464.  2012.
[24] Mohd Ariffanan Mohd Basri, “Robust Backstepping Controller Design with a Fuzzy Compensator for Autonomous Hovering Quadrotor UAV,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Vol. 42, Issue 3, pp. 379–391, September 2018.
[25] علیرضا مدیرروستا و مهدی خدابنده، "طراحی یک روش کنترل مد لغزشی انتگرالی تطبیقی برای پایدارسازی زمان محدود و مقاوم پرنده چهارملخه"، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 1، صفحه 321-332 ، بهار 1395.
[26] الناز قنبری، مهرام محبوب خواه و قادر کریمیان، "تعیین موقعیت عملگر نهایی یک ربات موازی چهار درجه آزادی با استفاده از روش بینایی ماشین "، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 4، 1395.