کنترل مستقیم گشتاور موتور سنکرون آهنربای دائم به روش مود لغزشی تاخیردار و خطی‌ساز فیدبک

نویسندگان

دانشکده مهندسی برق و رباتیک – دانشگاه صنعتی شاهرود - شاهرود

چکیده

در این مقاله، کارایی درایو موتور سنکرون آهنربای دائم با کنترل مستقیم گشتاور ازطریق یک ساختار تنظیمی جدید وابسته به تأخیر بهبود یافته است. ساختار پیشنهادی مبتنی‌بر کنترل‌کننده مود لغزشی تأخیری با رسش نمایی در حلقه بیرونی سرعت است که با یک کنترل‌کننده خطی‌ساز فیدبک در حلقه داخلی شار و گشتاور ترکیب گشته است. کنترل مود لغزشی تأخیری به کمک رسش نمایی، همگرایی سریع حالت‌ها به سطح لغزش را تضمین می‌نماید و به سبب تقریب پیوسته‌ای که از تابع کلیدزن در قانون لغزش ارائه می‌دهد، از لرزش‌های ناخواسته جلوگیری کرده و خطای مانا را تقلیل می‌دهد. قانون فیدبک خطی‌ساز نیز به جبران‌سازی اثر غیرخطی دینامیک موتور پرداخته و امکان بهره‌گیری از کنترل‌کننده‌های خطی را برای حلقه شار و گشتاور ممکن می‌سازد. ساختار ترکیبی پیشنهادی از مدولاسیون بردار فضایی بهره برده، برمبنای تئوری لیاپانوف بنیان‌گذاری شده و ضرایب آن به‌صورت بهینه طراحی شده‌است که تمامی این ویژگی‌ها در کنار هم منجربه تولید گشتاور بالا در سرعت‌های پایین، کاهش ریپل شار و گشتاور و تقلیل اعوجاج جریانی در درایو موتور می‌شود. این روش ازطریق شبیه‌سازی بر روی موتور زیمنس (1FT7082-AF7) مورد آزمون قرارگرفته و با سایر روش‌های مشابه مبتنی‌بر کنترل مستقیم گشتاور مورد مقایسه قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Direct Torque-Control of PMSM Drive by Delayed Sliding Mode and Feedback Linearization Control Approach

نویسندگان [English]

  • V. Asadzadeh
  • A. Dastfan
  • A. Darabi
Electrical Engineering and Robotics Department, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

In this paper, performance improvement of a direct torque-controlled permanent-magnet synchronous motor drive is achieved through a novel delay dependent controller. The method is based on a delayed sliding controller with exponential reaching law in the outer speed loop combined with a nonlinear feedback linearization based controller in the inner flux and torque loop. Delayed sliding mode controller guarantees fast reaching to the sliding surface and avoids unwanted chattering due to its continuous approximation of the switching term in the sliding law. Simultaneously, the feedback linearization deals with motor nonlinearities and facilitates linear controller design for torque and flux regulation. The proposed scheme is based on the Lyapunov approach and utilizes space vector pulse width modulation with optimized design parameters. It provides fast torque and flux control with diminished fluctuations, high torque at low speed, fast speed response and reduced stator current distortions. Theoretical analysis and simulation results on a Siemens servo motor (1FT7082-AF7) prove the merits of the method in considering flux, torque and speed control performance compared with the conventional direct torque control based methods.

کلیدواژه‌ها [English]

  • Permanent magnet synchronous motor
  • direct torque control
  • delayed sliding mode controller
  • feedback linearization
[1] X. Cai, Z. Zhang, J. Wang, and R. Kennel, “Optimal control solutions for PMSM drives: a comparison study with experimental assessments,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, 2018.
[2] F. J. Lin, I. F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 1, 2016.
[3] ارژنگ یوسفی، سید اصغر غلامیان، احمد رادان، «کاهش ریپل گشتاور در روش کنترل مستقیم گشتاور موتور پنج فاز مغناطیس دائم سنکرون تغذیه شده با مبدل ماتریسی»، مجله مهندسی برق دانشگاه تبریز، جلد 42، شماره 1، صفحات 52-47، بهار 1392.
[4] مهرداد جعفر بلند، علی شیرادی، «طراحی کنترل‌کننده برای موتور سنکرون آهن‌ربای دائم بدون یاتاقان با درنظرگرفتن تزویج بین سیم پیچ‌های گشتاور و تعلیق مغناطیسی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 915-905، پاییز 1396.
[5] I. Takahashi and T. Noguchi, “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Transactions on Industry applications, vol. IA-22, no. 5, 1986.
[6] A. Sivaprakasam and T. Manigandan, “An alternative scheme to reduce torque ripple and mechanical vibration in direct torque controlled permanent magnet synchronous motor”, Journal of Vibration and Control, vol. 21, no. 5, 2015.
[7] M. H. Vafaie, B. M. Dehkordi, P. Moallem, and A. Kiyoumarsi, “A new predictive direct torque control method for improving both steady-state and transient-state operations of the PMSM,” IEEE Transactions on Power Electronics, vol. 31, no. 5, 2016.
[8] Y. Inoue, S. Morimoto, and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM” IEEE Transactions on Industry Applications, vol. 46, no. 1, 2010.
[9] T. Türker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current controller for PMSM drives,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, 2016.
[10] H. Saberi, M. Sabahi, M. B. B. Sharifian, and M. Feyzi, “Improved sensorless direct torque control method using adaptive flux observer,” IET Power Electronics, vol. 7, no. 7, 2014.
[11] Y. Singh and S. Jain, “Comparative Analysis of PI and PID Controller for PMSM with New Sliding Mode observer”, International Journal of Electrical, Electronics and Computer Engineering, vol. 2, 2013.
[12] S. Vaidyanathan and C. Volos, Advances and Applications in Nonlinear Control Systems, Springer Customer Service Center Gmbh, 2018.
[13] Y. H. Lan, L. L. Wang, C. X. Chen, and D. Lei, “Optimal sliding mode robust control for fractional-order systems with application to permanent magnet synchronous motor tracking control,” Journal of Optimization Theory and Applications, vol. 174, no. 1, pp. 197-209, 2017.
[14] S. K. Kommuri, K. C. Veluvolu, M. Defoort, and Y. C. Soh, “Higher-order sliding mode observer for speed and position estimation in PMSM,” Mathematical Problems in Engineering, vol. 2014, pp. 1-12, 2014.
[15] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4069-4077, 2011.
[16] K. Jezernik, J. Korelič, and R. Horvat, “PMSM sliding mode FPGA-based control for torque ripple reduction,” IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3549-3556, 2013.
[17] Y. Li, J. B. Son, and J. M. Lee, “PMSM speed controller using switching algorithm of PD and Sliding mode control,” in Proceedings of ICCAS-SICE Conference, pp. 1260-1266, Fukuoka, Japan, 2009.
[18] W. Eom, I. Kang, and J. Lee, “Enhancement of the speed response of PMSM sensorless control using an improved adaptive sliding mode observer,” in Proceedings of 34th Annual Conference of IEEE in Industrial Electronics (IECON2008), pp. 188-191, 2008.
[19] X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1358-1365, 2013.
[20] S. K. Kommuri, K. C. Veluvolu, and M. Defoort, “Robust observer with higher-order sliding mode for sensorless speed estimation of a pmsm,” in Proceedings of European Control Conference (ECC), pp. 4598-460, Zurich, Switzerland, 2013.
[21] D. Efimov, A. Polyakov, L. Fridman, W. Perruquetti, and J.-P. Richard, “Delayed sliding mode control,” Automatica, vol. 64, pp. 37-43, 2016.
[22] C. J. Fallaha, M. Saad, H. Y. Kanaan, and K. Al-Haddad, “Sliding-mode robot control with exponential reaching law,” IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 600-610, 2011.
[23] S. M. Fazeli, H. A. Zarchi, J. Soltani, and H. W. Ping, “Adaptive sliding mode speed control of surface permanent magnet synchronous motor using input-output feedback linearization,” in Proceedings of  International Conference on Electrical Machines and Systems (ICEMS), pp. 1375-1380, Wuhan, China, 2008.
[24] L. Arab, M. A. Ahmed, A. Belmehdi, N. Habani, and N. A. Ahmed, “Predictive control of the permanent magnet synchronous motor based on the feedback linearization,” in Proceedings of 35th Annual Conference of IEEE Industrial Electronics (IECON), pp. 1697-1701, Porto, Portugal, 2009.
[25] C. Lascu, I. Boldea, and F. Blaabjerg, “Direct torque control via feedback linearization for permanent magnet synchronous motor drives,” in Proceedings of 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 338-343, Brasov, Romania, 2012.
[26] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3728-3737, 2016.
[27] S.-K. Kim, K.-G. Lee, and K.-B. Lee, “Singularity-free adaptive speed tracking control for uncertain permanent magnet synchronous motor,” IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1692-1701, 2016.
[28] P. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems, John Wiley & Sons, 2013.
[29] W. Gao and J. C. Hung, “Variable structure control of nonlinear systems: A new approach,” IEEE transactions on Industrial Electronics, vol. 40, no. 1, pp. 45-55, 1993.
[30] A. Tilli and M. Montanari, “A low-noise estimator of angular speed and acceleration from shaft encoder measurement,” Automatica, vol. 42, no. 3-4, pp. 169-176, 2001.
[31] J. J. Slotine and W. Li, Applied nonlinear control, Prentice hall Englewood Cliffs (NJ), 1991.
[32] Siemens AG, SIMODRIVE 611 Configuration Manual 1FT7 Synchronous Motors, 2010.
http://support.industry.siemens.com/cs/attachments/29311893/PFT7_en_en-US.pdf
[33] C. Yin, Y. Chen, and S. M. Zhong, “Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems,” Automatica, vol. 50, no.12, pp. 3173-3181, 2014.
[34] C. Dai, N. Zhang, and Z. Shen, “An adaptive nonlinear iterative sliding mode controller based on heuristic critic algorithm,” in Proceedings of IEEE International Conference on Information and Automation (ICIA), pp. 419-424, Ningbo, China, 2016.
[35] X. Chao, T. Shuping, and L. Helong, “An improved iterative nonlinear sliding mode control for tethered satellite,” in Proceedings of 36th Chinese Control Conference (CCC), pp. 3646-3651, Dalian, China, 2017.
[36] M. Roopaei, F. Shabaninia, and P. Karimaghaee, “Iterative sliding mode control,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 2, pp. 256-271, 2008.