ارائه رویکردی مقاوم و منعطف برای برنامه‌ریزی توسعه شبکه توزیع در حضور منابع تولید پراکنده و عدم‌قطعیت‌های بار، قیمت انرژی و منابع تجدیدپذیر

نویسندگان

1 گروه مهندسی برق - دانشکده مهندسی - دانشگاه کردستان

2 گروه مهندسی برق - واحد سنندج - دانشگاه آزاد اسلامی

چکیده

برنامه‌ریزی شبکه توزیع یکی از موضوعات مهم در برنامه‌ریزی سیستم قدرت است که مهمترین هدف آن تأمین بار الکتریکی شبکه در یک افق زمانی مشخص با کمترین هزینه است. با حضور منابع تولید پراکنده ازجمله منابع انرژی تجدیدپذیر و عدم‌قطعیت‌های آن‌ها و همچنین عدم‌قطعیت‌های بار و قیمت انرژی، رویکردهای جدیدی برای برنامه‌ریزی شبکه توزیع باید پیشنهاد شود. در حقیقت ابزارهای برنامه‌ریزی به‌صورت مقاوم و انعطاف‌پذیر برای بررسی سیستم و مدل‌سازی عدم‌قطعیت‌ها نیاز است. در این مقاله به‌منظور مدل‌سازی عدم‌قطعیت‌ها، یک تحلیل سناریو پیشنهاد می‌شود و به‌منظور بررسی اثر عدم‌قطعیت‌ها در مدل پیشنهادی، شاخص‌های مناسبی ازجمله شاخص بیشینه پشیمانی به‌عنوان معیار مقاوم بودن پاسخ و بیشینه هزینه تطبیق به‌عنوان معیار انعطاف‌پذیری مورداستفاده قرار می‌گیرند. مدل پیشنهادی به‌صورت چندهدفه است که با استفاده از الگوریتم جستجوی هارمونی بهبود یافته حل می‌شود و توسط روش تصمیم‌گیری فازی با توجه به معیارهای برنامه‌ریز جواب نهایی انتخاب می‌شود. به‌منظور نشان‌دادن کارایی مدل پیشنهادی، این مدل برروی سیستم‌های آزمون 9 و 69 شینه شعاعی استاندارد پیاده‌سازی شده و نتایج نشان می‌دهد که یک طرح مقاوم و منعطف برای شبکه می‌تواند تأثیر به‌سزایی در هزینه‌ها داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A Robust and Flexible Approach for Distribution Expansion Planning in the Presence of Distributed Generations and the Uncertainties Associated with Demand, Energy Price and Renewable Resources

نویسندگان [English]

  • A. Rastgou 1
  • J. Moshtagh 1
  • S. Bahramara 2
1 Department of Engineering, University of Kurdistan, Sanandaj, Iran
2 Department of Electrical Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
چکیده [English]

Distribution expansion planning is one of the most important issues in power system the main objective of which is to meet the demand at minimum operating costs. Due to the uncertain nature of renewable-based distributed generators (DGs) as well as uncertainties of the network, new approaches should be proposed to take into account these uncertainties. Indeed, more robust and flexible planning methods are needed in order to deal with the aforementioned uncertainties. Therefore, in this paper a scenario-based approach is proposed to model the uncertainties. Moreover, to consider the effect of the uncertainties in the model, appropriate indices consisting of maximum regret as robustness criterion and maximum adjustment cost as flexibility criterion are employed. The proposed model is a multi-objective optimization one that is solved using an improved version of non-dominated sorting harmony search algorithm. Furthermore, a fuzzy decision-making analysis tagged with planner criteria is applied in order to obtain the global optimal solution. To show the effectiveness of the proposed model, it is applied to a radial nine-node distribution system. The results indicate that the operating costs, in the presence of different types of DGs and uncertainties, are significantly affected by the proposed approach.

کلیدواژه‌ها [English]

  • distribution network planning
  • scenario analysis
  • fuzzy decision-making
  • regret index
  • adjustment cost
[1] H. Mori and T. Yoshida,“An efficient multi-objective memetic algorithm for uncertainties in distribution network expansion planning,” in Power & Energy Society General Meeting, 2009. PES'09. IEEE, 2009, pp. 1-6.
[2] S. N. Ravadanegh, N. Jahanyari, A. Amini, and N. Taghizadeghan,“Smart distribution grid multistage expansion planning under load forecasting uncertainty,” IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1136-1144, 2016.
[3] A. Zidan, M. F. Shaaban, and E. F. El-Saadany,“Long-term multi-objective distribution network planning by DG allocation and feeders’ reconfiguration,” Electric Power Systems Research, vol. 105, pp. 95-104, 2013.
[4] K. Zou, A. P. Agalgaonkar, K. M. Muttaqi, and S. Perera,“Distribution system planning with incorporating DG reactive capability and system uncertainties,” IEEE Transactions on Sustainable Energy, vol. 3, no. 1, pp. 112-123, 2012.
[5] سجاد نجفی روادانق و حامد خاتمی،  «طراحی شبکه توزیع بهینه و مقاوم نسبت به عدم‌قطعیت برآورد بار ». مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحه 323-332، تابستان 1395.
[6] نبی طاهری، رحمت الله هوشمند و رضا همتی،  « برنامه‌ریزی هماهنگ نصب منابع تولید پراکنده و توسعه شبکه توزیع در حضور نامعینی بار و قیمت انرژی ». مجله مهندسی برق دانشگاه تبریز، دوره 44، شماره 1، صفحه 44-56، زمستان 1392.
[7] M. Haghifam, H. Falaghi, and O. Malik,“Risk-based distributed generation placement,” IET Generation Transmission and Distribution, vol. 2, no. 2, pp. 252-260, 2008.
[8] E. Naderi, H. Seifi, and M. S. Sepasian,“A dynamic approach for distribution system planning considering distributed generation,” IEEE Transactions on Power Delivery, vol. 27, no. 3, pp. 1313-1322, 2012.
[9] G. Muñoz-Delgado, J. Contreras, and J. M. Arroyo,“Multistage generation and network expansion planning in distribution systems considering uncertainty and reliability,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3715-3728, 2016.
[10] G. Celli, E. Ghiani, G. Soma, and F. Pilo: Planning of reliable active distribution systems: in Proc. CIGRE 2012, 2012, pp. 1-12.
[11] M. S. Nazar, M. R. Haghifam, and M. Nažar,“A scenario driven multiobjective Primary–Secondary Distribution System Expansion Planning algorithm in the presence of wholesale–retail market,” International Journal of Electrical Power & Energy Systems, vol. 40, no. 1, pp. 29-45, 2012.
[12] S. Favuzza, G. Graditi, M. G. Ippolito, and E. R. Sanseverino,“Optimal electrical distribution systems reinforcement planning using gas micro turbines by dynamic ant colony search algorithm,” IEEE Transactions on Power Systems, vol. 22, no. 2, pp. 580-587, 2007.
[13] H. Xing, H. Cheng, Y. Zhang, and P. Zeng,“Active distribution network expansion planning integrating dispersed energy storage systems,” IET Generation, Transmission & Distribution, vol. 10, no. 3, pp. 638-644, 2016.
[14] V. F. Martins and C. L. Borges,“Active distribution network integrated planning incorporating distributed generation and load response uncertainties,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2164-2172, 2011.
[15] S. F. Santos et al.,“Novel Multi-Stage Stochastic DG Investment Planning with Recourse,” IEEE Transactions on Sustainable Energy, vol. 8, no. 1, pp. 164-178, 2017.
[16] U. Sultana, A. B. Khairuddin, A. Mokhtar, N. Zareen, and B. Sultana,“Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system,” Energy, vol. 111, pp. 525-536, 2016.
[17] H. Doagou-Mojarrad, G. Gharehpetian, H. Rastegar, and J. Olamaei,“Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm,” Energy, vol. 54, pp. 129-138, 2013.
[18] M. Esmaeili, M. Sedighizadeh, and M. Esmaili,“Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty,” Energy, vol. 103, pp. 86-99, 2016.
[19] R. R. Gonçalves, J. F. Franco, and M. J. Rider,“Short-term expansion planning of radial electrical distribution systems using mixed-integer linear programming,” IET Generation, Transmission & Distribution, vol. 9, no. 3, pp. 256-266, 2014.
[20] M. Rouholamini and M. Mohammadian,“Energy management of a grid-tied residential-scale hybrid renewable generation system incorporating fuel cell and electrolyzer,” Energy and Buildings, vol. 102, pp. 406-416, 2015.
[21] M. Rouholamini and M. Mohammadian,“Heuristic-based power management of a grid-connected hybrid energy system combined with hydrogen storage,” Renewable Energy, vol. 96, pp. 354-365, 2016.
[22] A. Tabares, J. F. Franco, M. Lavorato, and M. J. Rider,“Multistage Long-Term Expansion Planning of Electrical Distribution Systems Considering Multiple Alternatives,” IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 1900-1914, 2016.
[23] M. Asensio, P. M. de Quevedo, G. Munoz-Delgado, and J. Contreras,“Joint Distribution Network and Renewable Energy Expansion Planning considering Demand Response and Energy Storage ̶ Part I: Stochastic Programming Model,” IEEE Transactions on Smart Grid, 2016.
[24] M. Rouholamini, M. Mohammadian, C. Wang, and A. A. Gharaveisi,“Optimal fuzzy-based power management for real time application in a hybrid generation system,” IET Renewable Power Generation, 2017.
[25] Y. Y. Haimes, Risk modeling, assessment, and management. John Wiley & Sons, 2015.
[26] J. H. Zhao, Z. Y. Dong, P. Lindsay, and K. P. Wong,“Flexible transmission expansion planning with uncertainties in an electricity market,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 479-488, 2009.
[27] S. Sakawa and H. Yano,“An interactive fuzzy satisficing method for multiobjective nonlinear programming problems with fuzzy parameters,” Fuzzy Sets and Systems, vol. 30, no. 3, pp. 221-238, 1989.
[28] S. N. Ravadanegh, N. Jahanyari, A. Amini, and N. Taghizadeghan,“Smart distribution grid multistage expansion planning under load forecasting uncertainty,” IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1136-1144, 2016.
[29] M. Rahmani-Andebili, “Nonlinear demand response programs for residential customers with nonlinear behavioral models,” Energy and Buildings, vol. 119, pp. 352-362, 2016.
[30] V. Quintana, H. Temraz, and K. Hipel,“Two-stage power system distribution planning algorithm,” in IEE Proceedings (Generation, Transmission and Distribution), 1993, vol. 140, no. 1, pp. 17-29.
[31] International Energy Agency (IEA). Distributed generation in liberalized electricity markets. Paris: IEA; 2002.
[32] Strachan ND, Farrell AE. Emissions from distributed generation. Carnegie Mellon electricity industry center (CEIC) working paper ,http://wpweb2.tepper.cmu.edu/ceic/pdfs/CEIC_02_04.pdf
[33] M. Rabiee, M. Zandieh, and P. Ramezani,“Bi-objective partial flexible job shop scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches,” International Journal of Production Research, vol. 50, no. 24, pp. 7327-7342, 2012.
[34] J. Savier and D. Das,“Impact of network reconfiguration on loss allocation of radial distribution systems,” IEEE Transactions on Power Delivery, vol. 22, no. 4, pp. 2473-2480, 2007.
[35] T. Niknam, H. D. Mojarrad, and M. Nayeripour,“A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch,” Energy, vol. 35, no. 4, pp. 1764-1778, 2010.
[36] H.-H. Chang,“Genetic algorithms and non-intrusive energy management system based economic dispatch for cogeneration units,” Energy, vol. 36, no. 1, pp. 181-190, 2011.