[1] Gardner, J.W. and Varadan, V.K., Microsensors, MEMS and smart devices. John Wiley & Sons, Inc, 2001.
[2] Zargari, S., Veladi, H., Sadeghzadeh, B., Shahabi, P., Frounchi, J., Pashaei, A. M., Design and fabrication of a microfluidic chip for in vitro oocyte maturation. Tabriz Journal of Electrical Engineering, 46(377), pp.211-221, 2016.
[3] Talebzadeh, N., Malekshahi, M. R., Veladi, H., A novel method to construct a double-side-electrode electroosmotic mixer for biotechnological applications. Tabriz Journal of Electrical Engineering, 46(175), pp.255-265, 2016.
[4] Van Weemen, B.K. and Schuurs, A.H.W.M., Immunoassay using antigen—enzyme conjugates. FEBS letters, 15(3), pp.232-236, 1971.
[5] Lazcka, O., Del Campo, F.J. and Munoz, F.X., Pathogen detection: a perspective of traditional methods and biosensors. Biosensors and bioelectronics, 22(7), pp.1205-1217, 2007.
[6] Ng, A.H., Uddayasankar, U. and Wheeler, A.R., Immunoassays in microfluidic systems. Analytical and bioanalytical chemistry, 397(3), pp.991-1007, 2010.
[7] Hu, G., Gao, Y. and Li, D., Modeling micropatterned antigen–antibody binding kinetics in a microfluidic chip. Biosensors and Bioelectronics, 22(7), pp.1403-1409, 2007.
[8] Poorreza, E., Vafaie, R.H., Mehdipoor, M., Pourmand, A. and Ghavifekr, H.B., 2013. Microseparator based-on 4-phase travelling wave dielectrophoresis for lab-on-a-chip applications. Indian Journal of Pure & Applied Physics, 51, pp.506-515, 2013.
[9] Deval, J., Tabeling, P. and Ho, C.M., A dielectrophoretic chaotic mixer. In Micro Electro Mechanical Systems, The Fifteenth IEEE International Conference on IEEE, (pp. 36-39), Las Vegas, USA, 2002.
[10] Ramos, A., Garcia, P., Gonzalez, A., Castellanos, A., Morgan, H. and Green, N.G., AC electrokinetic pumping of liquids using arrays of microelectrodes. In Microtechnologies for the New Millennium 2005 (pp. 305-313). International Society for Optics and Photonics, June, 2005.
[11] Lin, C.C., Wang, J.H., Wu, H.W. and Lee, G.B., Microfluidic immunoassays. JALA: Journal of the Association for Laboratory Automation, 15(3), pp.253-274, 2010.
[12] Vafaie, R. H., Mehdipour, M., Pourmand, A., & Ghavifekr, H. B., A novel miniaturized electroosmotically-driven micromixer modified by surface channel technology. In Electrical Engineering (ICEE), 20th Iranian Conference on, IEEE (pp. 124-129). 2012.
[13] Bown, M.R. and Meinhart, C.D., AC electroosmotic flow in a DNA concentrator. Microfluidics and Nanofluidics, 2(6), pp.513-523, 2006.
[14] Gao, Y., Hu, G., Lin, F.Y., Sherman, P.M. and Li, D., An electrokinetically-controlled immunoassay for simultaneous detection of multiple microbial antigens. Biomedical microdevices, 7(4), pp.301-312, 2005.
[15] Hong, F.J., Cao, J. and Cheng, P., A parametric study of AC electrothermal flow in microchannels with asymmetrical interdigitated electrodes. International Communications in heat and mass transfer, 38(3), pp.275-279, 2011.
[16] Huang, K.R. and Chang, J.S., Three dimensional simulation on binding efficiency of immunoassay for a biosensor with applying electrothermal effect. Heat and Mass Transfer, 49(11), pp.1647-1658, 2013.
[17] Liu, X., Yang, K., Wadhwa, A., Eda, S., Li, S. and Wu, J., Development of an AC electrokinetics-based immunoassay system for on-site serodiagnosis of infectious diseases. Sensors and Actuators A: Physical, 171(2), pp.406-413, 2011.
[18] Wu, J., Biased AC electro-osmosis for on-chip bioparticle processing. IEEE Transactions on Nanotechnology, 5(2), pp.84-89, 2006.
[19] Lian, M., Islam, N. and Wu, J., Particle line assembly/patterning by microfluidic AC electroosmosis. In Journal of Physics: Conference Series (Vol. 34, No. 1, p. 589). IOP Publishing, 2006.
[20] Castellanos, A., Ramos, A., Gonzalez, A., Green, N.G. and Morgan, H., Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. Journal of Physics D: Applied Physics, 36(20), p.2584, 2003.
[21] Studer, V., Pépin, A., Chen, Y. and Ajdari, A., An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst, 129(10), pp.944-949, 2004.
[22] Vafaie, R.H., Ghavifekr, H.B., Lintel, H., Brugger, J. and Renaud, P., Bi‐directional AC electrothermal micropump for on‐chip biological applications. Electrophoresis, 2016.
[23] Williams, S.J. and Green, N.G., Electrothermal pumping with interdigitated electrodes and resistive heaters. Electrophoresis, 36(15), pp.1681-1689, 2015.
[24] Vafaie, R.H. and Ghavifekr, H.B., 2017. Configurable ACET micro-manipulator for high conductive mediums by using a novel electrode engineering. Microsystem Technologies, 23(5), pp.1393-1403.
[25] Sigurdson, M., Wang, D. and Meinhart, C.D., Electrothermal stirring for heterogeneous immunoassays. Lab on a Chip, 5(12), pp.1366-1373, 2005.
[26] Feldman, H.C., Sigurdson, M. and Meinhart, C.D., AC electrothermal enhancement of heterogeneous assays in microfluidics. Lab on a Chip, 7(11), pp.1553-1559, 2007.
[27] Zhang, R., Dalton, C. and Jullien, G.A., Two-phase AC electrothermal fluidic pumping in a coplanar asymmetric electrode array. Microfluidics and nanofluidics, 10(3), pp.521-529, 2011.
[28] Bazant, M.Z. and Ben, Y., Theoretical prediction of fast 3D AC electro-osmotic pumps. Lab on a Chip, 6(11), pp.1455-1461, 2006.
[29] Green, N.G., Ramos, A., Gonzalez, A., Morgan, H. and Castellanos, A., Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Physical review E, 66(2), p.026305, 2002.
[30] Morgan, H. and Green, N.G., AC electrokinetics. Research Studies Press, 2003.
[31] Hibbert, D.B., Gooding, J.J. and Erokhin, P., Kinetics of irreversible adsorption with diffusion: Application to biomolecule immobilization. Langmuir, 18(5), pp.1770-1776, 2002.
[32] Yuan, Q., Yang, K. and Wu, J., Optimization of planar interdigitated microelectrode array for biofluid transport by AC electrothermal effect. Microfluidics and nanofluidics, 16(1-2), pp.167-178, 2014.
[33] Lide, D.R., Handbook of chemistry and physics, 2004.
[34] Ghandchi, M. and Vafaie, R.H., AC electrothermal actuation mechanism for on-chip mixing of high ionic strength fluids. Microsystem Technologies, vol.23 no.5, pp.1495-1507, 2017.